The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Dichotomy of global density of Riesz capacity”

Riesz potentials derived by one-mode interacting Fock space approach

Nobuhiro Asai (2007)

Colloquium Mathematicae

Similarity:

The main aim of this short paper is to study Riesz potentials on one-mode interacting Fock spaces equipped with deformed annihilation, creation, and neutral operators with constants c 0 , 0 , c 1 , 1 and c 0 , 1 > 0 , c 1 , 2 0 as in equations (1.4)-(1.6). First, to emphasize the importance of these constants, we summarize our previous results on the Hilbert space of analytic L² functions with respect to a probability measure on ℂ. Then we consider the Riesz kernels of order 2α, α = c 0 , 1 / c 1 , 2 , on ℂ if 0 < c 0 , 1 < c 1 , 2 , which can be derived from...

Generalized Riesz products produced from orthonormal transforms

Nikolaos Atreas, Antonis Bisbas (2012)

Colloquium Mathematicae

Similarity:

Let p = m k k = 0 p - 1 be a finite set of step functions or real valued trigonometric polynomials on = [0,1) satisfying a certain orthonormality condition. We study multiscale generalized Riesz product measures μ defined as weak-* limits of elements μ N V N ( N ) , where V N are p N -dimensional subspaces of L₂() spanned by an orthonormal set which is produced from dilations and multiplications of elements of p and N V N ¯ = L ( ) . The results involve mutual absolute continuity or singularity of such Riesz products extending previous...

On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals

Mouhamadou Dosso, Ibrahim Fofana, Moumine Sanogo (2013)

Annales Polonici Mathematici

Similarity:

For 1 ≤ q ≤ α ≤ p ≤ ∞, ( L q , l p ) α is a complex Banach space which is continuously included in the Wiener amalgam space ( L q , l p ) and contains the Lebesgue space L α . We study the closure ( L q , l p ) c , 0 α in ( L q , l p ) α of the space of test functions (infinitely differentiable and with compact support in d ) and obtain norm inequalities for Riesz potential operators and Riesz transforms in these spaces. We also introduce the Sobolev type space W ¹ ( ( L q , l p ) α ) (a subspace of a Morrey-Sobolev space, but a superspace of the classical Sobolev space...

Sharp inequalities for Riesz transforms

Adam Osękowski (2014)

Studia Mathematica

Similarity:

We establish the following sharp local estimate for the family R j j = 1 d of Riesz transforms on d . For any Borel subset A of d and any function f : d , A | R j f ( x ) | d x C p | | f | | L p ( d ) | A | 1 / q , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, C p = [ 2 q + 2 Γ ( q + 1 ) / π q + 1 k = 0 ( - 1 ) k / ( 2 k + 1 ) q + 1 ] 1 / q , 1 < p < 2, and C p = [ 4 Γ ( q + 1 ) / π q k = 0 1 / ( 2 k + 1 ) q ] 1 / q , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.

Large time behaviour of a conservation law regularised by a Riesz-Feller operator: the sub-critical case

Carlota Maria Cuesta, Xuban Diez-Izagirre (2023)

Czechoslovak Mathematical Journal

Similarity:

We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order 1 + α , with α ( 0 , 1 ) , which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function | u | q - 1 u / q for q > 1 . We show that in the sub-critical case, 1 < q < 1 + α , the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for...

L¹ representation of Riesz spaces

Bahri Turan (2006)

Studia Mathematica

Similarity:

Let E be a Riesz space. By defining the spaces L ¹ E and L E of E, we prove that the center Z ( L ¹ E ) of L ¹ E is L E and show that the injectivity of the Arens homomorphism m: Z(E)” → Z(E˜) is equivalent to the equality L ¹ E = Z ( E ) ' . Finally, we also give some representation of an order continuous Banach lattice E with a weak unit and of the order dual E˜ of E in L ¹ E which are different from the representations appearing in the literature.

Variation for the Riesz transform and uniform rectifiability

Albert Mas, Xavier Tolsa (2014)

Journal of the European Mathematical Society

Similarity:

For 1 n < d integers and ρ > 2 , we prove that an n -dimensional Ahlfors-David regular measure μ in d is uniformly n -rectifiable if and only if the ρ -variation for the Riesz transform with respect to μ is a bounded operator in L 2 ( μ ) . This result can be considered as a partial solution to a well known open problem posed by G. David and S. Semmes which relates the L 2 ( μ ) boundedness of the Riesz transform to the uniform rectifiability of μ .

Variations on Bochner-Riesz multipliers in the plane

Daniele Debertol (2006)

Studia Mathematica

Similarity:

We consider the multiplier m μ defined for ξ ∈ ℝ by m μ ( ξ ) ( ( 1 - ξ ² - ξ ² ) / ( 1 - ξ ) ) μ 1 D ( ξ ) , D denoting the open unit disk in ℝ. Given p ∈ ]1,∞[, we show that the optimal range of μ’s for which m μ is a Fourier multiplier on L p is the same as for Bochner-Riesz means. The key ingredient is a lemma about some modifications of Bochner-Riesz means inside convex regions with smooth boundary and non-vanishing curvature, providing a more flexible version of a result by Iosevich et al. [Publ. Mat. 46 (2002)]. As an application, we show...

Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces

Yoshihiro Mizuta, Tetsu Shimomura (2023)

Czechoslovak Mathematical Journal

Similarity:

Our aim is to establish Sobolev type inequalities for fractional maximal functions M , ν f and Riesz potentials I , α f in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a C 1 function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents Φ ( x , t ) = t p ( x ) + ( b ( x ) t ) q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions, p ( x ) < q ( x ) for x , and b ( · ) is nonnegative and Hölder continuous of order θ ( 0 , 1 ] .

The Daugavet property and translation-invariant subspaces

Simon Lücking (2014)

Studia Mathematica

Similarity:

Let G be an infinite, compact abelian group and let Λ be a subset of its dual group Γ. We study the question which spaces of the form C Λ ( G ) or L ¹ Λ ( G ) and which quotients of the form C ( G ) / C Λ ( G ) or L ¹ ( G ) / L ¹ Λ ( G ) have the Daugavet property. We show that C Λ ( G ) is a rich subspace of C(G) if and only if Γ Λ - 1 is a semi-Riesz set. If L ¹ Λ ( G ) is a rich subspace of L¹(G), then C Λ ( G ) is a rich subspace of C(G) as well. Concerning quotients, we prove that C ( G ) / C Λ ( G ) has the Daugavet property if Λ is a Rosenthal set, and that L ¹ Λ ( G ) is a poor subspace of L¹(G)...

Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces

Xuefang Yan (2015)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ . Let L be a non-negative self-adjoint operator of order m on L 2 ( X ) . Assume that the semigroup e - t L generated by L satisfies the Davies-Gaffney estimate of order m and L satisfies the Plancherel type estimate. Let H L p ( X ) be the Hardy space associated with L . We show the boundedness of Stein’s square function 𝒢 δ ( L ) arising from Bochner-Riesz means associated to L from Hardy spaces H L p ( X ) to L p ( X ) , and also study...

A characterization of Sobolev spaces via local derivatives

David Swanson (2010)

Colloquium Mathematicae

Similarity:

Let 1 ≤ p < ∞, k ≥ 1, and let Ω ⊂ ℝⁿ be an arbitrary open set. We prove a converse of the Calderón-Zygmund theorem that a function f W k , p ( Ω ) possesses an L p derivative of order k at almost every point x ∈ Ω and obtain a characterization of the space W k , p ( Ω ) . Our method is based on distributional arguments and a pointwise inequality due to Bojarski and Hajłasz.

A note on the commutator of two operators on a locally convex space

Edvard Kramar (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Denote by C the commutator A B - B A of two bounded operators A and B acting on a locally convex topological vector space. If A C - C A = 0 , we show that C is a quasinilpotent operator and we prove that if A C - C A is a compact operator, then C is a Riesz operator.

Orthosymmetric bilinear map on Riesz spaces

Elmiloud Chil, Mohamed Mokaddem, Bourokba Hassen (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let E be a Riesz space, F a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map T : E × E F is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123–134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial P : E F is linearly represented. This fits in the type of...