Displaying similar documents to “Optimal estimates for the fractional Hardy operator”

Some Hölder-logarithmic estimates on Hardy-Sobolev spaces

Imed Feki, Ameni Massoudi (2024)

Czechoslovak Mathematical Journal

Similarity:

We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k , p ( G ) , where k * , 1 p and G is either the open unit disk 𝔻 or the annular domain G s , 0 < s < 1 of the complex space . More precisely, we study the behavior on the interior of G of any function f belonging to the unit ball of the Hardy-Sobolev spaces H k , p ( G ) from its behavior on any open connected subset I of the boundary G of G with respect to the L 1 -norm. Our results can be viewed as an improvement and generalization of...

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

Similarity:

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

A weighted inequality for the Hardy operator involving suprema

Pavla Hofmanová (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let u be a weight on ( 0 , ) . Assume that u is continuous on ( 0 , ) . Let the operator S u be given at measurable non-negative function ϕ on ( 0 , ) by S u ϕ ( t ) = sup 0 < τ t u ( τ ) ϕ ( τ ) . We characterize weights v , w on ( 0 , ) for which there exists a positive constant C such that the inequality 0 [ S u ϕ ( t ) ] q w ( t ) d t 1 q 0 [ ϕ ( t ) ] p v ( t ) d t 1 p holds for every 0 < p , q < . Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces.

A Hardy type inequality for W 0 m , 1 ( Ω ) functions

Hernán Castro, Juan Dávila, Hui Wang (2013)

Journal of the European Mathematical Society

Similarity:

We consider functions u W 0 m , 1 ( Ω ) , where Ω N is a smooth bounded domain, and m 2 is an integer. For all j 0 , 1 k m - 1 , such that 1 j + k m , we prove that i u ( x ) d ( x ) m - j - k W 0 k , 1 ( Ω ) with k ( i u ( x ) d ( x ) m - j - k ) L 1 ( Ω ) C u W m , 1 ( Ω ) , where d is a smooth positive function which coincides with dist ( x , Ω ) near Ω , and l denotes any partial differential operator of order l .

Hardy-Rogers-type fixed point theorems for α - G F -contractions

Muhammad Arshad, Eskandar Ameer, Aftab Hussain (2015)

Archivum Mathematicum

Similarity:

The aim of this paper is to introduce some new fixed point results of Hardy-Rogers-type for α - η - G F -contraction in a complete metric space. We extend the concept of F -contraction into an α - η - G F -contraction of Hardy-Rogers-type. An example has been constructed to demonstrate the novelty of our results.

Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces

Xuefang Yan (2015)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ . Let L be a non-negative self-adjoint operator of order m on L 2 ( X ) . Assume that the semigroup e - t L generated by L satisfies the Davies-Gaffney estimate of order m and L satisfies the Plancherel type estimate. Let H L p ( X ) be the Hardy space associated with L . We show the boundedness of Stein’s square function 𝒢 δ ( L ) arising from Bochner-Riesz means associated to L from Hardy spaces H L p ( X ) to L p ( X ) , and also study...

The boundedness of two classes of integral operators

Xin Wang, Ming-Sheng Liu (2021)

Czechoslovak Mathematical Journal

Similarity:

The aim of this paper is to characterize the L p - L q boundedness of two classes of integral operators from L p ( 𝒰 , d V α ) to L q ( 𝒰 , d V β ) in terms of the parameters a , b , c , p , q and α , β , where 𝒰 is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).

L p - L q boundedness of analytic families of fractional integrals

Valentina Casarino, Silvia Secco (2008)

Studia Mathematica

Similarity:

We consider a double analytic family of fractional integrals S z γ , α along the curve t | t | α , introduced for α = 2 by L. Grafakos in 1993 and defined by ( S z γ , α f ) ( x , x ) : = 1 / Γ ( z + 1 / 2 ) | u - 1 | z ψ ( u - 1 ) f ( x - t , x - u | t | α ) d u | t | γ d t / t , where ψ is a bump function on ℝ supported near the origin, f c ( ² ) , z,γ ∈ ℂ, Re γ ≥ 0, α ∈ ℝ, α ≥ 2. We determine the set of all (1/p,1/q,Re z) such that S z γ , α maps L p ( ² ) to L q ( ² ) boundedly. Our proof is based on product-type kernel arguments. More precisely, we prove that the kernel K - 1 + i θ i ϱ , α is a product kernel on ℝ², adapted to the curve t | t | α ; as a consequence, we show...

Weighted local Orlicz-Hardy spaces with applications to pseudo-differential operators

Dachun Yang, Sibei Yang

Similarity:

Let Φ be a concave function on (0,∞) of strictly critical lower type index p Φ ( 0 , 1 ] and ω A l o c ( ) (the class of local weights introduced by V. S. Rychkov). We introduce the weighted local Orlicz-Hardy space h ω Φ ( ) via the local grand maximal function. Let ρ ( t ) t - 1 / Φ - 1 ( t - 1 ) for all t ∈ (0,∞). We also introduce the BMO-type space b m o ρ , ω ( ) and establish the duality between h ω Φ ( ) and b m o ρ , ω ( ) . Characterizations of h ω Φ ( ) , including the atomic characterization, the local vertical and the local nontangential maximal function characterizations, are...

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.