Displaying similar documents to “Another look at real quadratic fields of relative class number 1”

Positivity of quadratic base change L -functions

Hervé Jacquet, Chen Nan (2001)

Bulletin de la Société Mathématique de France

Similarity:

We show that certain quadratic base change L -functions for Gl ( 2 ) are non-negative at their center of symmetry.

Sumsets in quadratic residues

I. D. Shkredov (2014)

Acta Arithmetica

Similarity:

We describe all sets A p which represent the quadratic residues R p in the sense that R = A + A or R = A ⨣ A. Also, we consider the case of an approximate equality R ≈ A + A and R ≈ A ⨣ A and prove that A is then close to a perfect difference set.

Capturing forms in dense subsets of finite fields

Brandon Hanson (2013)

Acta Arithmetica

Similarity:

An open problem of arithmetic Ramsey theory asks if given an r-colouring c:ℕ → 1,...,r of the natural numbers, there exist x,y ∈ ℕ such that c(xy) = c(x+y) apart from the trivial solution x = y = 2. More generally, one could replace x+y with a binary linear form and xy with a binary quadratic form. In this paper we examine the analogous problem in a finite field q . Specifically, given a linear form L and a quadratic form Q in two variables, we provide estimates on the necessary size...

Weighted Erdős-Kac type theorem over quadratic field in short intervals

Xiaoli Liu, Zhishan Yang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let 𝕂 be a quadratic field over the rational field and a 𝕂 ( n ) be the number of nonzero integral ideals with norm n . We establish Erdős-Kac type theorems weighted by a 𝕂 ( n ) l and a 𝕂 ( n 2 ) l of quadratic field in short intervals with l + . We also get asymptotic formulae for the average behavior of a 𝕂 ( n ) l and a 𝕂 ( n 2 ) l in short intervals.

Exponent of class group of certain imaginary quadratic fields

Kalyan Chakraborty, Azizul Hoque (2020)

Czechoslovak Mathematical Journal

Similarity:

Let n > 1 be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form x 2 - 2 y n whose ideal class group has an element of order n . This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.

Minimal 𝒮 -universality criteria may vary in size

Noam D. Elkies, Daniel M. Kane, Scott Duke Kominers (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this note, we give simple examples of sets 𝒮 of quadratic forms that have minimal 𝒮 -universality criteria of multiple cardinalities. This answers a question of Kim, Kim, and Oh [KKO05] in the negative.

Weight reduction for cohomological mod p modular forms over imaginary quadratic fields

Adam Mohamed (2014)

Publications mathématiques de Besançon

Similarity:

Let F be an imaginary quadratic field and 𝒪 its ring of integers. Let 𝔫 𝒪 be a non-zero ideal and let p > 5 be a rational inert prime in F and coprime with 𝔫 . Let V be an irreducible finite dimensional representation of 𝔽 ¯ p [ GL 2 ( 𝔽 p 2 ) ] . We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in V already lives in the cohomology with coefficients in 𝔽 ¯ p d e t e for some e 0 ; except possibly in some few cases.

On the structure of the Galois group of the Abelian closure of a number field

Georges Gras (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields K having isomorphic absolute Abelian Galois groups A K , we study any such issue for arbitrary number fields K . We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some p -adic obstructions coming from the global units of K . By restriction to the p -Sylow subgroups of A K and assuming the Leopoldt conjecture we...

A twisted class number formula and Gross's special units over an imaginary quadratic field

Saad El Boukhari (2023)

Czechoslovak Mathematical Journal

Similarity:

Let F / k be a finite abelian extension of number fields with k imaginary quadratic. Let O F be the ring of integers of F and n 2 a rational integer. We construct a submodule in the higher odd-degree algebraic K -groups of O F using corresponding Gross’s special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher “twisted” class number of F , which is the cardinal of the finite algebraic K -group K 2 n - 2 ( O F ) .