Displaying similar documents to “Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces”

Well-posedness of second order degenerate differential equations in vector-valued function spaces

Shangquan Bu (2013)

Studia Mathematica

Similarity:

Using known results on operator-valued Fourier multipliers on vector-valued function spaces, we give necessary or sufficient conditions for the well-posedness of the second order degenerate equations (P₂): d/dt (Mu’)(t) = Au(t) + f(t) (0 ≤ t ≤ 2π) with periodic boundary conditions u(0) = u(2π), (Mu’)(0) = (Mu’)(2π), in Lebesgue-Bochner spaces L p ( , X ) , periodic Besov spaces B p , q s ( , X ) and periodic Triebel-Lizorkin spaces F p , q s ( , X ) , where A and M are closed operators in a Banach space X satisfying D(A) ⊂ D(M)....

Existence of nonnegative periodic solutions in neutral integro-differential equations with functional delay

Imene Soulahia, Abdelouaheb Ardjouni, Ahcene Djoudi (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay x ' ( t ) = - t - τ ( t ) t a ( t , s ) g ( x ( s ) ) d s + d d t Q ( t , x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for τ , g , a , Q and G to show that this sum of mappings fits into the framework of a modification of...

Positive periodic solutions of a neutral functional differential equation with multiple delays

Yongxiang Li, Ailan Liu (2018)

Mathematica Bohemica

Similarity:

This paper deals with the existence of positive ω -periodic solutions for the neutral functional differential equation with multiple delays ( u ( t ) - c u ( t - δ ) ) ' + a ( t ) u ( t ) = f ( t , u ( t - τ 1 ) , , u ( t - τ n ) ) . The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of c and the coefficient function a ( t ) , and the nonlinearity f ( t , x 1 , , x n ) . Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.

The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian

Jean Mawhin (2006)

Journal of the European Mathematical Society

Similarity:

We prove an Ambrosetti–Prodi type result for the periodic solutions of the equation ( | u ' | p 2 u ' ) ) ' + f ( u ) u ' + g ( x , u ) = t , when f is arbitrary and g ( x , u ) + or g ( x , u ) when | u | . The proof uses upper and lower solutions and the Leray–Schauder degree.

Existence and uniqueness of periodic solutions for odd-order ordinary differential equations

Yongxiang Li, He Yang (2011)

Annales Polonici Mathematici

Similarity:

The paper deals with the existence and uniqueness of 2π-periodic solutions for the odd-order ordinary differential equation u ( 2 n + 1 ) = f ( t , u , u ' , . . . , u ( 2 n ) ) , where f : × 2 n + 1 is continuous and 2π-periodic with respect to t. Some new conditions on the nonlinearity f ( t , x , x , . . . , x 2 n ) to guarantee the existence and uniqueness are presented. These conditions extend and improve the ones presented by Cong [Appl. Math. Lett. 17 (2004), 727-732].

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

Similarity:

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class...

The L p -Helmholtz projection in finite cylinders

Tobias Nau (2015)

Czechoslovak Mathematical Journal

Similarity:

In this article we prove for 1 < p < the existence of the L p -Helmholtz projection in finite cylinders Ω . More precisely, Ω is considered to be given as the Cartesian product of a cube and a bounded domain V having C 1 -boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in Ω is solved, which implies existence and a representation of the L p -Helmholtz projection...

Maximal regularity of discrete and continuous time evolution equations

Sönke Blunck (2001)

Studia Mathematica

Similarity:

We consider the maximal regularity problem for the discrete time evolution equation u n + 1 - T u = f for all n ∈ ℕ₀, u₀ = 0, where T is a bounded operator on a UMD space X. We characterize the discrete maximal regularity of T by two types of conditions: firstly by R-boundedness properties of the discrete time semigroup ( T ) n and of the resolvent R(λ,T), secondly by the maximal regularity of the continuous time evolution equation u’(t) - Au(t) = f(t) for all t > 0, u(0) = 0, where A:= T - I. By recent...

On the uniqueness of periodic decomposition

Viktor Harangi (2011)

Fundamenta Mathematicae

Similarity:

Let a , . . . , a k be arbitrary nonzero real numbers. An ( a , . . . , a k ) -decomposition of a function f:ℝ → ℝ is a sum f + + f k = f where f i : is an a i -periodic function. Such a decomposition is not unique because there are several solutions of the equation h + + h k = 0 with h i : a i -periodic. We will give solutions of this equation with a certain simple structure (trivial solutions) and study whether there exist other solutions or not. If not, we say that the ( a , . . . , a k ) -decomposition is essentially unique. We characterize those periods for which essential...

Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space

Bahloul Rachid (2019)

Archivum Mathematicum

Similarity:

The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations d d t [ x ( t ) - L ( x t ) ] = A [ x ( t ) - L ( x t ) ] + G ( x t ) + 1 Γ ( α ) - t ( t - s ) α - 1 ( - s a ( s - ξ ) x ( ξ ) d ξ ) d s + f ( t ) , ( α > 0 ) with the periodic condition x ( 0 ) = x ( 2 π ) , where a L 1 ( + ) . Our approach is based on the R-boundedness of linear operators L p -multipliers and UMD-spaces.

On the vector-valued Fourier transform and compatibility of operators

In Sook Park (2005)

Studia Mathematica

Similarity:

Let be a locally compact abelian group and let 1 < p ≤ 2. ’ is the dual group of , and p’ the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform F if F T : L p ( ) X L p ' ( ' ) Y admits a continuous extension [ F , T ] : [ L p ( ) , X ] [ L p ' ( ' ) , Y ] . Let T p denote the collection of such T’s. We show that T p × = T p × = T p × for any and positive integer n. Moreover, if the factor group of by its identity component is a direct sum of a torsion-free group and a finite group with discrete topology then...

Sums of commuting operators with maximal regularity

Christian Le Merdy, Arnaud Simard (2001)

Studia Mathematica

Similarity:

Let Y be a Banach space and let S L p be a subspace of an L p space, for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively and satisfying the so-called maximal regularity property. Let ℬ and be their natural extensions to S ( Y ) L p ( Y ) . We investigate conditions that imply that ℬ + is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if Y is a UMD Banach lattice and e - t B is a positive contraction...

Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams, Mathew Omonigho Omeike, Idowu A. Osinuga, Biodun S. Badmus (2023)

Mathematica Bohemica

Similarity:

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results....

Stable periodic solutions in scalar periodic differential delay equations

Anatoli Ivanov, Sergiy Shelyag (2023)

Archivum Mathematicum

Similarity:

A class of nonlinear simple form differential delay equations with a T -periodic coefficient and a constant delay τ > 0 is considered. It is shown that for an arbitrary value of the period T > 4 τ - d 0 , for some d 0 > 0 , there is an equation in the class such that it possesses an asymptotically stable T -period solution. The periodic solutions are constructed explicitly for the piecewise constant nonlinearities and the periodic coefficients involved, by reduction of the problem to one-dimensional maps. The...