The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Conley index in Hilbert spaces and a problem of Angenent and van der Vorst”

Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory

Marek Izydorek, Krzysztof P. Rybakowski (2003)

Fundamenta Mathematicae

Similarity:

Let Ω be a bounded domain in N with smooth boundary. Consider the following elliptic system: - Δ u = v H ( u , v , x ) in Ω, - Δ v = u H ( u , v , x ) in Ω, u = 0, v = 0 in ∂Ω. (ES) We assume that H is an even "-"-type Hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions. We show that if (0,0) is a hyperbolic solution of (ES), then (ES) has at least 2|μ| nontrivial solutions, where μ = μ(0,0) is the renormalized Morse index of (0,0). This proves a conjecture by Angenent and van der Vorst. ...

Existence and nonexistence of solutions for a quasilinear elliptic system

Qin Li, Zuodong Yang (2015)

Annales Polonici Mathematici

Similarity:

By a sub-super solution argument, we study the existence of positive solutions for the system ⎧ - Δ p u = a ( x ) F ( x , u , v ) in Ω, ⎪ - Δ q v = a ( x ) F ( x , u , v ) in Ω, ⎨u,v > 0 in Ω, ⎩u = v = 0 on ∂Ω, where Ω is a bounded domain in N with smooth boundary or Ω = N . A nonexistence result is obtained for radially symmetric solutions.

Partially elliptic differential equations having distributions as their right members

H. Marcinkowska

Similarity:

ContentsIntroduction.............................................................................................................................31. Definitions, notations and some auxiliary lemmas...................................................42. The definition of the spaces H p , q ; Y ( Ω , ) ..........................................................73. Some properties of the spaces H p , q ; Y ( Ω , ) ...................................................104. Some examples of the spaces H p , q ; Y ( Ω , ) ....................................................155....

T-p(x)-solutions for nonlinear elliptic equations with an L¹-dual datum

El Houssine Azroul, Abdelkrim Barbara, Meryem El Lekhlifi, Mohamed Rhoudaf (2012)

Applicationes Mathematicae

Similarity:

We establish the existence of a T-p(x)-solution for the p(x)-elliptic problem - d i v ( a ( x , u , u ) ) + g ( x , u ) = f - d i v F in Ω, where Ω is a bounded open domain of N , N ≥ 2 and a : Ω × × N N is a Carathéodory function satisfying the natural growth condition and the coercivity condition, but with only a weak monotonicity condition. The right hand side f lies in L¹(Ω) and F belongs to i = 1 N L p ' ( · ) ( Ω ) .

On annealed elliptic Green's function estimates

Daniel Marahrens, Felix Otto (2015)

Mathematica Bohemica

Similarity:

We consider a random, uniformly elliptic coefficient field a on the lattice d . The distribution · of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green’s function G ( t , x , y ) satisfy optimal annealed estimates which are L 2 and L 1 , respectively, in probability, i.e., they obtained bounds on | x G ( t , x , y ) | 2 1 / 2 and | x y G ( t , x , y ) | . In particular, the elliptic Green’s function G ( x , y ) satisfies optimal annealed bounds. In their recent work,...

Multiplicity results for a class of concave-convex elliptic systems involving sign-changing weight functions

Honghui Yin, Zuodong Yang (2011)

Annales Polonici Mathematici

Similarity:

Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems ⎧ - Δ p u + | u | p - 2 u = f 1 λ ( x ) | u | q - 2 u + 2 α / ( α + β ) g μ | u | α - 2 u | v | β , x ∈ Ω, ⎨ - Δ p v + | v | p - 2 v = f 2 λ ( x ) | v | q - 2 v + 2 β / ( α + β ) g μ | u | α | v | β - 2 v , x ∈ Ω, ⎩ u = v = 0, x∈ ∂Ω, where 1 < q < p < N and Ω N is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and f i λ i ( x ) = λ i f i + ( x ) + f i - ( x ) (i = 1,2) are sign-changing functions, where f i ± ( x ) = m a x ± f i ( x ) , 0 , g μ ( x ) = a ( x ) + μ b ( x ) , and Δ p u = d i v ( | u | p - 2 u ) denotes the p-Laplace operator. We use variational methods.

Separable solutions of quasilinear Lane–Emden equations

Alessio Porretta, Laurent Véron (2013)

Journal of the European Mathematical Society

Similarity:

For 0 < p - 1 < q and either ϵ = 1 or ϵ = - 1 , we prove the existence of solutions of - Δ p u = ϵ u q in a cone C S , with vertex 0 and opening S , vanishing on C S , of the form u ( x ) = x - β ω ( x / x ) . The problem reduces to a quasilinear elliptic equation on S and the existence proof is based upon degree theory and homotopy methods. We also obtain a nonexistence result in some critical case by making use of an integral type identity.

Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity

Djairo Guedes de Figueiredo, Jean-Pierre Gossez, Pedro Ubilla (2006)

Journal of the European Mathematical Society

Similarity:

We study the existence, nonexistence and multiplicity of positive solutions for the family of problems Δ u = f λ ( x , u ) , u H 0 1 ( Ω ) , where Ω is a bounded domain in N , N 3 and λ > 0 is a parameter. The results include the well-known nonlinearities of the Ambrosetti–Brezis–Cerami type in a more general form, namely λ a ( x ) u q + b ( x ) u p , where 0 q < 1 < p 2 * 1 . The coefficient a ( x ) is assumed to be nonnegative but b ( x ) is allowed to change sign, even in the critical case. The notions of local superlinearity and local sublinearity introduced in [9] are essential...

Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms

Salvatore Bonafede (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation i = 1 m x i a i ( x , u , u ) - c 0 | u | p - 2 u = f ( x , u , u ) , assuming that the principal part of the equation satisfies the following degenerate ellipticity condition λ ( | u | ) i = 1 m a i ( x , u , η ) η i ν ( x ) | η | p , and the lower-order term f has a natural growth with respect to u .

Energy and Morse index of solutions of Yamabe type problems on thin annuli

Mohammed Ben Ayed, Khalil El Mehdi, Mohameden Ould Ahmedou, Filomena Pacella (2005)

Journal of the European Mathematical Society

Similarity:

We consider the Yamabe type family of problems ( P ε ) : Δ u ε = u ε ( n + 2 ) / ( n 2 ) , u ε > 0 in A ε , u ε = 0 on A ε , where A ε is an annulus-shaped domain of n , n 3 , which becomes thinner as ε 0 . We show that for every solution u ε , the energy A ε | u | 2 as well as the Morse index tend to infinity as ε 0 . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on n , a half-space or an infinite strip. Our argument also involves a Liouville...

Existence of positive radial solutions for the elliptic equations on an exterior domain

Yongxiang Li, Huanhuan Zhang (2016)

Annales Polonici Mathematici

Similarity:

We discuss the existence of positive radial solutions of the semilinear elliptic equation ⎧-Δu = K(|x|)f(u), x ∈ Ω ⎨αu + β ∂u/∂n = 0, x ∈ ∂Ω, ⎩ l i m | x | u ( x ) = 0 , where Ω = x N : | x | > r , N ≥ 3, K: [r₀,∞) → ℝ⁺ is continuous and 0 < r r K ( r ) d r < , f ∈ C(ℝ⁺,ℝ⁺), f(0) = 0. Under the conditions related to the asymptotic behaviour of f(u)/u at 0 and infinity, the existence of positive radial solutions is obtained. Our conditions are more precise and weaker than the superlinear or sublinear growth conditions. Our discussion is based on the...

Fourth-order nonlinear elliptic equations with critical growth

David E. Edmunds, Donato Fortunato, Enrico Jannelli (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

Perturbed nonlinear degenerate problems in N

A. El Khalil, S. El Manouni, M. Ouanan (2009)

Applicationes Mathematicae

Similarity:

Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ d i v ( x , u ) + a ( x ) | u | p - 2 u = g ( x ) | u | p - 2 u + h ( x ) | u | s - 1 u in N ⎨ ⎩ u > 0, l i m | x | u ( x ) = 0 , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.

Entire solutions to a class of fully nonlinear elliptic equations

Ovidiu Savin (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We study nonlinear elliptic equations of the form F ( D 2 u ) = f ( u ) where the main assumption on F and f is that there exists a one dimensional solution which solves the equation in all the directions ξ n . We show that entire monotone solutions u are one dimensional if their 0 level set is assumed to be Lipschitz, flat or bounded from one side by a hyperplane.

Solutions to a class of singular quasilinear elliptic equations

Lin Wei, Zuodong Yang (2010)

Annales Polonici Mathematici

Similarity:

We study the existence of positive solutions to ⎧ d i v ( | u | p - 2 u ) + q ( x ) u - γ = 0 on Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω is N or an unbounded domain, q(x) is locally Hölder continuous on Ω and p > 1, γ > -(p-1).

Fourth-order nonlinear elliptic equations with critical growth

David E. Edmunds, Donato Fortunato, Enrico Jannelli (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

A Littlewood-Paley type inequality with applications to the elliptic Dirichlet problem

Caroline Sweezy (2007)

Annales Polonici Mathematici

Similarity:

Let L be a strictly elliptic second order operator on a bounded domain Ω ⊂ ℝⁿ. Let u be a solution to L u = d i v f in Ω, u = 0 on ∂Ω. Sufficient conditions on two measures, μ and ν defined on Ω, are established which imply that the L q ( Ω , d μ ) norm of |∇u| is dominated by the L p ( Ω , d v ) norms of d i v f and | f | . If we replace |∇u| by a local Hölder norm of u, the conditions on μ and ν can be significantly weaker.

Linking and the Morse complex

Michael Usher (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

For a Morse function f on a compact oriented manifold M , we show that f has more critical points than the number required by the Morse inequalities if and only if there exists a certain class of link in M whose components have nontrivial linking number, such that the minimal value of f on one of the components is larger than its maximal value on the other. Indeed we characterize the precise number of critical points of f in terms of the Betti numbers of M and the behavior of f with respect...

Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity

Olivier Rey, Juncheng Wei (2005)

Journal of the European Mathematical Society

Similarity:

We show that the critical nonlinear elliptic Neumann problem Δ u μ u + u 7 / 3 = 0 in Ω , u > 0 in Ω , u ν = 0 on Ω , where Ω is a bounded and smooth domain in 5 , has arbitrarily many solutions, provided that μ > 0 is small enough. More precisely, for any positive integer K , there exists μ K > 0 such that for 0 < μ < μ K , the above problem has a nontrivial solution which blows up at K interior points in Ω , as μ 0 . The location of the blow-up points is related to the domain geometry. The solutions are obtained as critical points of some finite-dimensional...

Fonctions biharmoniques adjointes

Emmanuel P. Smyrnelis (2010)

Annales Polonici Mathematici

Similarity:

The study of the equation (L₂L₁)*h = 0 or of the equivalent system L*₂h₂ = -h₁, L*₁h₁ = 0, where L j ( j = 1 , 2 ) is a second order elliptic differential operator, leads us to the following general framework: Starting from a biharmonic space, for example the space of solutions (u₁,u₂) of the system L₁u₁ = -u₂, L₂u₂ = 0, L j ( j = 1 , 2 ) being elliptic or parabolic, and by means of its Green pairs, we construct the associated adjoint biharmonic space which is in duality with the initial one.

A local-global principle for rational isogenies of prime degree

Andrew V. Sutherland (2012)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let K be a number field. We consider a local-global principle for elliptic curves E / K that admit (or do not admit) a rational isogeny of prime degree . For suitable K (including K = ), we prove that this principle holds for all 1 mod 4 , and for &lt; 7 , but find a counterexample when = 7 for an elliptic curve with j -invariant 2268945 / 128 . For K = we show that, up to isomorphism, this is the only counterexample.