Displaying similar documents to “A uniqueness criterion for the solution of the stationary Navier-Stokes equations”

A uniqueness criterion for the solution of the stationary Navier-Stokes equations

Giovanni Prouse (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

A uniqueness criterion is given for the weak solution of the Navier-Stokes equations in the stationary case. Precisely, it is proved that, for a generic known term, there exists one and only one solution such that the mechanical power of the corresponding flow is maximum and that this maximum is "stable" in an appropriate sense.

Time-dependent coupling of Navier–Stokes and Darcy flows

Aycil Cesmelioglu, Vivette Girault, Béatrice Rivière (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.

Lagrangian approximations and weak solutions of the Navier-Stokes equations

Werner Varnhorn (2008)

Banach Center Publications

Similarity:

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles...

Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system

Radim Hošek, Václav Mácha (2019)

Czechoslovak Mathematical Journal

Similarity:

The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative...