The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A remark on local fractional calculus and ordinary derivatives”

Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators

Jamshad Ahmad, Syed Tauseef Mohyud-Din, H. M. Srivastava, Xiao-Jun Yang (2015)

Waves, Wavelets and Fractals

Similarity:

In this paper we develop analytical solutions for the Helmholtz and Laplace equations involving local fractional derivative operators. We implement the local fractional decomposition method (LFDM) for finding the exact solutions. The iteration procedure is based upon the local fractional derivative sense. The numerical results, whichwe present in this paper, show that the methodology used provides an efficient and simple tool for solving fractal phenomena arising in mathematical physics...

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

Similarity:

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...

Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems

Choukri Derbazi, Hadda Hammouche (2021)

Mathematica Bohemica

Similarity:

We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

On a partial Hadamard fractional integral inclusion

Aurelian Cernea (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.

Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis

Astha Chauhan, Rajan Arora (2019)

Communications in Mathematics

Similarity:

In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation...

Fractional Derivatives in Spaces of Generalized Functions

Stojanović, Mirjana (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo We generalize the two forms of the fractional derivatives (in Riemann-Liouville and Caputo sense) to spaces of generalized functions using appropriate techniques such as the multiplication of absolutely continuous function by the Heaviside function, and the analytical continuation. As an application, we give the two forms of the fractional derivatives of discontinuous functions in spaces of...