Displaying similar documents to “Tree pattern matching from regular tree expressions”

Closure for spanning trees and distant area

Jun Fujisawa, Akira Saito, Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A k-ended tree is a tree with at most k endvertices. Broersma and Tuinstra [3] have proved that for k ≥ 2 and for a pair of nonadjacent vertices u, v in a graph G of order n with d e g G u + d e g G v n - 1 , G has a spanning k-ended tree if and only if G+uv has a spanning k-ended tree. The distant area for u and v is the subgraph induced by the set of vertices that are not adjacent with u or v. We investigate the relationship between the condition on d e g G u + d e g G v and the structure of the distant area for u and v. We prove...

A note on the cubical dimension of new classes of binary trees

Kamal Kabyl, Abdelhafid Berrachedi, Éric Sopena (2015)

Czechoslovak Mathematical Journal

Similarity:

The cubical dimension of a graph G is the smallest dimension of a hypercube into which G is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with 2 n vertices, n 1 , is n . The 2-rooted complete binary tree of depth n is obtained from two copies of the complete binary tree of depth n by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice...

A partition of the Catalan numbers and enumeration of genealogical trees

Rainer Schimming (1996)

Discussiones Mathematicae Graph Theory

Similarity:

A special relational structure, called genealogical tree, is introduced; its social interpretation and geometrical realizations are discussed. The numbers C n , k of all abstract genealogical trees with exactly n+1 nodes and k leaves is found by means of enumeration of code words. For each n, the C n , k form a partition of the n-th Catalan numer Cₙ, that means C n , 1 + C n , 2 + . . . + C n , n = C .

On the (2,2)-domination number of trees

You Lu, Xinmin Hou, Jun-Ming Xu (2010)

Discussiones Mathematicae Graph Theory

Similarity:

Let γ(G) and γ 2 , 2 ( G ) denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that ( 2 ( γ ( T ) + 1 ) ) / 3 γ 2 , 2 ( T ) 2 γ ( T ) . Moreover, we characterize all the trees achieving the equalities.

The tree property at both ω + 1 and ω + 2

Laura Fontanella, Sy David Friedman (2015)

Fundamenta Mathematicae

Similarity:

We force from large cardinals a model of ZFC in which ω + 1 and ω + 2 both have the tree property. We also prove that if we strengthen the large cardinal assumptions, then in the final model ω + 2 even satisfies the super tree property.

On operators from separable reflexive spaces with asymptotic structure

Bentuo Zheng (2008)

Studia Mathematica

Similarity:

Let 1 < q < p < ∞ and q ≤ r ≤ p. Let X be a reflexive Banach space satisfying a lower- q -tree estimate and let T be a bounded linear operator from X which satisfies an upper- p -tree estimate. Then T factors through a subspace of ( F ) r , where (Fₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an ( p , q ) FDD. Similarly, let 1 < q < r < p < ∞ and let X be a separable reflexive Banach space satisfying an asymptotic...

Compactness properties of weighted summation operators on trees

Mikhail Lifshits, Werner Linde (2011)

Studia Mathematica

Similarity:

We investigate compactness properties of weighted summation operators V α , σ as mappings from ℓ₁(T) into q ( T ) for some q ∈ (1,∞). Those operators are defined by ( V α , σ x ) ( t ) : = α ( t ) s t σ ( s ) x ( s ) , t ∈ T, where T is a tree with partial order ⪯. Here α and σ are given weights on T. We introduce a metric d on T such that compactness properties of (T,d) imply two-sided estimates for e ( V α , σ ) , the (dyadic) entropy numbers of V α , σ . The results are applied to concrete trees, e.g. moderately increasing, biased or binary trees and to weights...

Trees and the dynamics of polynomials

Laura G. DeMarco, Curtis T. McMullen (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

In this paper we study branched coverings of metrized, simplicial trees F : T T which arise from polynomial maps f : with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space T D compactifying the moduli space of polynomials of degree D ; that F records the asymptotic behavior of the multipliers of f ; and that any meromorphic family of polynomials over Δ * can be completed by a unique tree at its central fiber. In the cubic case we give a...

On operators which factor through l p or c₀

Bentuo Zheng (2006)

Studia Mathematica

Similarity:

Let 1 < p < ∞. Let X be a subspace of a space Z with a shrinking F.D.D. (Eₙ) which satisfies a block lower-p estimate. Then any bounded linear operator T from X which satisfies an upper-(C,p)-tree estimate factors through a subspace of ( F ) l p , where (Fₙ) is a blocking of (Eₙ). In particular, we prove that an operator from L p (2 < p < ∞) satisfies an upper-(C,p)-tree estimate if and only if it factors through l p . This gives an answer to a question of W. B. Johnson. We also prove...

The instability of nonseparable complete Erdős spaces and representations in ℝ-trees

Jan J. Dijkstra, Kirsten I. S. Valkenburg (2010)

Fundamenta Mathematicae

Similarity:

One way to generalize complete Erdős space c is to consider uncountable products of zero-dimensional G δ -subsets of the real line, intersected with an appropriate Banach space. The resulting (nonseparable) complete Erdős spaces can be fully classified by only two cardinal invariants, as done in an earlier paper of the authors together with J. van Mill. As we think this is the correct way to generalize the concept of complete Erdős space to a nonseparable setting, natural questions arise...

Turán's problem and Ramsey numbers for trees

Zhi-Hong Sun, Lin-Lin Wang, Yi-Li Wu (2015)

Colloquium Mathematicae

Similarity:

Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with V = v , v , . . . , v n - 1 , E = v v , . . . , v v n - 3 , v n - 4 v n - 2 , v n - 3 v n - 1 and E = v v , . . . , v v n - 3 , v n - 3 v n - 2 , v n - 3 v n - 1 . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for r ( T , T i ) , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.

Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants 𝒮𝒪 5 and 𝒮𝒪 6

Wei Gao (2024)

Czechoslovak Mathematical Journal

Similarity:

I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by 𝒮𝒪 1 , 𝒮𝒪 2 , , 𝒮𝒪 6 . Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal...

Quasi-tree graphs with the minimal Sombor indices

Yibo Li, Huiqing Liu, Ruiting Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

The Sombor index S O ( G ) of a graph G is the sum of the edge weights d G 2 ( u ) + d G 2 ( v ) of all edges u v of G , where d G ( u ) denotes the degree of the vertex u in G . A connected graph G = ( V , E ) is called a quasi-tree if there exists u V ( G ) such that G - u is a tree. Denote 𝒬 ( n , k ) = { G : G is a quasi-tree graph of order n with G - u being a tree and d G ( u ) = k } . We determined the minimum and the second minimum Sombor indices of all quasi-trees in 𝒬 ( n , k ) . Furthermore, we characterized the corresponding extremal graphs, respectively.

Pruning Galton–Watson trees and tree-valued Markov processes

Romain Abraham, Jean-François Delmas, Hui He (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We present a new pruning procedure on discrete trees by adding marks on the nodes of trees. This procedure allows us to construct and study a tree-valued Markov process { 𝒢 ( u ) } by pruning Galton–Watson trees and an analogous process { 𝒢 * ( u ) } by pruning a critical or subcritical Galton–Watson tree conditioned to be infinite. Under a mild condition on offspring distributions, we show that the process { 𝒢 ( u ) } run until its ascension time has a representation in terms of { 𝒢 * ( u ) } . A similar result was obtained by...

Shadow trees of Mandelbrot sets

Virpi Kauko (2003)

Fundamenta Mathematicae

Similarity:

The topology and combinatorial structure of the Mandelbrot set d (of degree d ≥ 2) can be studied using symbolic dynamics. Each parameter is mapped to a kneading sequence, or equivalently, an internal address; but not every such sequence is realized by a parameter in d . Thus the abstract Mandelbrot set is a subspace of a larger, partially ordered symbol space, Λ d . In this paper we find an algorithm to construct “visible trees” from symbolic sequences which works whether or not the sequence...

A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs

Yaping Mao, Christopher Melekian, Eddie Cheng (2023)

Czechoslovak Mathematical Journal

Similarity:

For a connected graph G = ( V , E ) and a set S V ( G ) with at least two vertices, an S -Steiner tree is a subgraph T = ( V ' , E ' ) of G that is a tree with S V ' . If the degree of each vertex of S in T is equal to 1, then T is called a pendant S -Steiner tree. Two S -Steiner trees are if they share no vertices other than S and have no edges in common. For S V ( G ) and | S | 2 , the pendant tree-connectivity τ G ( S ) is the maximum number of internally disjoint pendant S -Steiner trees in G , and for k 2 , the k -pendant tree-connectivity τ k ( G ) is the...

On locating and differentiating-total domination in trees

Mustapha Chellali (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A total dominating set of a graph G = (V,E) with no isolated vertex is a set S ⊆ V such that every vertex is adjacent to a vertex in S. A total dominating set S of a graph G is a locating-total dominating set if for every pair of distinct vertices u and v in V-S, N(u)∩S ≠ N(v)∩S, and S is a differentiating-total dominating set if for every pair of distinct vertices u and v in V, N[u]∩S ≠ N[v] ∩S. Let γ L ( G ) and γ D ( G ) be the minimum cardinality of a locating-total dominating set and a differentiating-total...