Displaying similar documents to “Hydrological applications of a model-based approach to fuzzy set membership functions”

Tolerance problems for generalized eigenvectors of interval fuzzy matrices

Martin Gavalec, Helena Myšková, Ján Plavka, Daniela Ponce (2022)

Kybernetika

Similarity:

Fuzzy algebra is a special type of algebraic structure in which classical addition and multiplication are replaced by maximum and minimum (denoted and , respectively). The eigenproblem is the search for a vector x (an eigenvector) and a constant λ (an eigenvalue) such that A x = λ x , where A is a given matrix. This paper investigates a generalization of the eigenproblem in fuzzy algebra. We solve the equation A x = λ B x with given matrices A , B and unknown constant λ and vector x . Generalized eigenvectors...

L -fuzzy ideal degrees in effect algebras

Xiaowei Wei, Fu Gui Shi (2022)

Kybernetika

Similarity:

In this paper, considering L being a completely distributive lattice, we first introduce the concept of L -fuzzy ideal degrees in an effect algebra E , in symbol 𝔇 e i . Further, we characterize L -fuzzy ideal degrees by cut sets. Then it is shown that an L -fuzzy subset A in E is an L -fuzzy ideal if and only if 𝔇 e i ( A ) = , which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between L -fuzzy ideals and cut sets ( L β -nested sets and L α -nested sets). Finally, we obtain that...

Generalized convexities related to aggregation operators of fuzzy sets

Susana Díaz, Esteban Induráin, Vladimír Janiš, Juan Vicente Llinares, Susana Montes (2017)

Kybernetika

Similarity:

We analyze the existence of fuzzy sets of a universe that are convex with respect to certain particular classes of fusion operators that merge two fuzzy sets. In addition, we study aggregation operators that preserve various classes of generalized convexity on fuzzy sets. We focus our study on fuzzy subsets of the real line, so that given a mapping F : [ 0 , 1 ] × [ 0 , 1 ] [ 0 , 1 ] , a fuzzy subset, say X , of the real line is said to be F -convex if for any x , y , z such that x y z , it holds that μ X ( y ) F ( μ X ( x ) , μ X ( z ) ) , where μ X : [ 0 , 1 ] stands here for the...

Minimizing and maximizing a linear objective function under a fuzzy max - * relational equation and an inequality constraint

Zofia Matusiewicz (2022)

Kybernetika

Similarity:

This paper provides an extension of results connected with the problem of the optimization of a linear objective function subject to max - * fuzzy relational equations and an inequality constraint, where * is an operation. This research is important because the knowledge and the algorithms presented in the paper can be used in various optimization processes. Previous articles describe an important problem of minimizing a linear objective function under a fuzzy max - * relational equation and an...

On the T -conditionality of T -power based implications

Zuming Peng (2022)

Kybernetika

Similarity:

It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of T -conditionality. In this paper, the T -conditionality for T -power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication I T being T -conditional are obtained. Moreover, the sufficient conditions under which a power based implication I T is T * -conditional are discussed, this discussions...

Controllable and tolerable generalized eigenvectors of interval max-plus matrices

Matej Gazda, Ján Plavka (2021)

Kybernetika

Similarity:

By max-plus algebra we mean the set of reals equipped with the operations a b = max { a , b } and a b = a + b for a , b . A vector x is said to be a generalized eigenvector of max-plus matrices A , B ( m , n ) if A x = λ B x for some λ . The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval)...

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...

Remarks on effect-tribes

Sylvia Pulmannová, Elena Vinceková (2015)

Kybernetika

Similarity:

We show that an effect tribe of fuzzy sets 𝒯 [ 0 , 1 ] X with the property that every f 𝒯 is 0 ( 𝒯 ) -measurable, where 0 ( 𝒯 ) is the family of subsets of X whose characteristic functions are central elements in 𝒯 , is a tribe. Moreover, a monotone σ -complete effect algebra with RDP with a Loomis-Sikorski representation ( X , 𝒯 , h ) , where the tribe 𝒯 has the property that every f 𝒯 is 0 ( 𝒯 ) -measurable, is a σ -MV-algebra.

Balcar's theorem on supports

Lev Bukovský (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In A theorem on supports in the theory of semisets [Comment. Math. Univ. Carolinae 14 (1973), no. 1, 1–6] B. Balcar showed that if σ D M is a support, M being an inner model of ZFC, and 𝒫 ( D σ ) M = r ` ` σ with r M , then r determines a preorder " " of D such that σ becomes a filter on ( D , ) generic over M . We show that if the relation r is replaced by a function 𝒫 ( D σ ) M = f - 1 ( σ ) , then there exists an equivalence relation " " on D and a partial order on D / such that D / is a complete Boolean algebra, σ / is a generic filter and [ f ( u ) ] = - ( u / ) for...