Displaying similar documents to “An extension method for t-norms on subintervals to t-norms on bounded lattices”

On covariety lattices

Tomasz Brengos (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

This paper shows basic properties of covariety lattices. Such lattices are shown to be infinitely distributive. The covariety lattice L C V ( K ) of subcovarieties of a covariety K of F-coalgebras, where F:Set → Set preserves arbitrary intersections is isomorphic to the lattice of subcoalgebras of a P κ -coalgebra for some cardinal κ. A full description of the covariety lattice of Id-coalgebras is given. For any topology τ there exist a bounded functor F:Set → Set and a covariety K of F-coalgebras,...

Hyperreflexivity of bilattices

Kamila Kliś-Garlicka (2016)

Czechoslovak Mathematical Journal

Similarity:

The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice we can construct the bilattice Σ . Similarly, having a bilattice Σ we may consider the lattice Σ . In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples...

On the special context of independent sets

Vladimír Slezák (2001)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

In this paper the context of independent sets J L p is assigned to the complete lattice (P(M),⊆) of all subsets of a non-empty set M. Some properties of this context, especially the irreducibility and the span, are investigated.

Some methods to obtain t-norms and t-conorms on bounded lattices

Gül Deniz Çaylı (2019)

Kybernetika

Similarity:

In this study, we introduce new methods for constructing t-norms and t-conorms on a bounded lattice L based on a priori given t-norm acting on [ a , 1 ] and t-conorm acting on [ 0 , a ] for an arbitrary element a L { 0 , 1 } . We provide an illustrative example to show that our construction methods differ from the known approaches and investigate the relationship between them. Furthermore, these methods are generalized by iteration to an ordinal sum construction for t-norms and t-conorms on a bounded lattice. ...

A class of multiplicative lattices

Tiberiu Dumitrescu, Mihai Epure (2021)

Czechoslovak Mathematical Journal

Similarity:

We study the multiplicative lattices L which satisfy the condition a = ( a : ( a : b ) ) ( a : b ) for all a , b L . Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group or . A sharp lattice L localized at its maximal elements are totally ordered sharp lattices. The converse is true if L has finite character.

Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices

Gábor Czédli (2024)

Mathematica Bohemica

Similarity:

Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no M 3 as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset P is said to be JConSPS-representable if there is an SPS lattice L such that P is isomorphic to the poset J ( Con L ) of join-irreducible congruences of L . We prove that...

Lattice-inadmissible incidence structures

Frantisek Machala, Vladimír Slezák (2004)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Join-independent and meet-independent sets in complete lattices were defined in [6]. According to [6], to each complete lattice (L,≤) and a cardinal number p one can assign (in a unique way) an incidence structure J L p of independent sets of (L,≤). In this paper some lattice-inadmissible incidence structures are founded, i.e. such incidence structures that are not isomorphic to any incidence structure J L p .

Sufficient conditions for a T-partial order obtained from triangular norms to be a lattice

Lifeng Li, Jianke Zhang, Chang Zhou (2019)

Kybernetika

Similarity:

For a t-norm T on a bounded lattice ( L , ) , a partial order T was recently defined and studied. In [11], it was pointed out that the binary relation T is a partial order on L , but ( L , T ) may not be a lattice in general. In this paper, several sufficient conditions under which ( L , T ) is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on L such that ( L , T ) is a lattice are presented.

Orthogonality and complementation in the lattice of subspaces of a finite vector space

Ivan Chajda, Helmut Länger (2022)

Mathematica Bohemica

Similarity:

We investigate the lattice 𝐋 ( 𝐕 ) of subspaces of an m -dimensional vector space 𝐕 over a finite field GF ( q ) with a prime power q = p n together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice 𝐋 ( 𝐕 ) satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when 𝐋 ( 𝐕 ) is orthomodular....

Dieudonné-type theorems for lattice group-valued k -triangular set functions

Antonio Boccuto, Xenofon Dimitriou (2019)

Kybernetika

Similarity:

Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for k -triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.

G -supplemented property in the lattices

Shahabaddin Ebrahimi Atani (2022)

Mathematica Bohemica

Similarity:

Let L be a lattice with the greatest element 1 . Following the concept of generalized small subfilter, we define g -supplemented filters and investigate the basic properties and possible structures of these filters.