The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the vectors associated with the roots of max-plus characteristic polynomials”

On realizability of sign patterns by real polynomials

Vladimir Kostov (2018)

Czechoslovak Mathematical Journal

Similarity:

The classical Descartes’ rule of signs limits the number of positive roots of a real polynomial in one variable by the number of sign changes in the sequence of its coefficients. One can ask the question which pairs of nonnegative integers ( p , n ) , chosen in accordance with this rule and with some other natural conditions, can be the pairs of numbers of positive and negative roots of a real polynomial with prescribed signs of the coefficients. The paper solves this problem for degree 8 polynomials. ...

Root location for the characteristic polynomial of a Fibonacci type sequence

Zhibin Du, Carlos Martins da Fonseca (2023)

Czechoslovak Mathematical Journal

Similarity:

We analyse the roots of the polynomial x n - p x n - 1 - q x - 1 for p q 1 . This is the characteristic polynomial of the recurrence relation F k , p , q ( n ) = p F k , p , q ( n - 1 ) + q F k , p , q ( n - k + 1 ) + F k , p , q ( n - k ) for n k , which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.

Sum of squares and the Łojasiewicz exponent at infinity

Krzysztof Kurdyka, Beata Osińska-Ulrych, Grzegorz Skalski, Stanisław Spodzieja (2014)

Annales Polonici Mathematici

Similarity:

Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations h ( x ) = = h r ( x ) = 0 and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then f | V extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial h ( x ) = i = 1 r h ² i ( x ) σ i ( x ) , where σ i are sums of squares of polynomials of degree at most p, such that f(x) + h(x) >...

Cycles on algebraic models of smooth manifolds

Wojciech Kucharz (2009)

Journal of the European Mathematical Society

Similarity:

Every compact smooth manifold M is diffeomorphic to a nonsingular real algebraic set, called an algebraic model of M . We study modulo 2 homology classes represented by algebraic subsets of X , as X runs through the class of all algebraic models of M . Our main result concerns the case where M is a spin manifold.

On the distribution of the roots of polynomial z k - z k - 1 - - z - 1

Carlos A. Gómez, Florian Luca (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the polynomial f k ( z ) = z k - z k - 1 - - z - 1 for k 2 which arises as the characteristic polynomial of the k -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of f k ( z ) which lie inside the unit disk.

The R₂ measure for totally positive algebraic integers

V. Flammang (2016)

Colloquium Mathematicae

Similarity:

Let α be a totally positive algebraic integer of degree d, i.e., all of its conjugates α = α , . . . , α d are positive real numbers. We study the set ₂ of the quantities ( i = 1 d ( 1 + α ² i ) 1 / 2 ) 1 / d . We first show that √2 is the smallest point of ₂. Then, we prove that there exists a number l such that ₂ is dense in (l,∞). Finally, using the method of auxiliary functions, we find the six smallest points of ₂ in (√2,l). The polynomials involved in the auxiliary function are found by a recursive algorithm.

Polynomial relations amongst algebraic units of low measure

John Garza (2014)

Acta Arithmetica

Similarity:

For an algebraic number field and a subset α 1 , . . . , α r , we establish a lower bound for the average of the logarithmic heights that depends on the ideal of polynomials in [ x 1 , . . . , x r ] vanishing at the point ( α 1 , . . . , α r ) .

Rational solutions of certain Diophantine equations involving norms

Maciej Ulas (2014)

Acta Arithmetica

Similarity:

We present some results concerning the unirationality of the algebraic variety f given by the equation N K / k ( X + α X + α ² X ) = f ( t ) , where k is a number field, K=k(α), α is a root of an irreducible polynomial h(x) = x³ + ax + b ∈ k[x] and f ∈ k[t]. We are mainly interested in the case of pure cubic extensions, i.e. a = 0 and b ∈ k∖k³. We prove that if deg f = 4 and f contains a k-rational point (x₀,y₀,z₀,t₀) with f(t₀)≠0, then f is k-unirational. A similar result is proved for a broad family of quintic polynomials...

An alternative polynomial Daugavet property

Elisa R. Santos (2014)

Studia Mathematica

Similarity:

We introduce a weaker version of the polynomial Daugavet property: a Banach space X has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial P: X → X satisfies m a x ω | | I d + ω P | | = 1 + | | P | | . We study the stability of the APDP by c₀-, - and ℓ₁-sums of Banach spaces. As a consequence, we obtain examples of Banach spaces with the APDP, namely L ( μ , X ) and C(K,X), where X has the APDP.

Hodge type decomposition

Wojciech Kozłowski (2007)

Annales Polonici Mathematici

Similarity:

In the space Λ p of polynomial p-forms in ℝⁿ we introduce some special inner product. Let H p be the space of polynomial p-forms which are both closed and co-closed. We prove in a purely algebraic way that Λ p splits as the direct sum d * ( Λ p + 1 ) δ * ( Λ p - 1 ) H p , where d* (resp. δ*) denotes the adjoint operator to d (resp. δ) with respect to that inner product.

Symmetric identity for polynomial sequences satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x )

Farid Bencherif, Rachid Boumahdi, Tarek Garici (2021)

Communications in Mathematics

Similarity:

Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x ) with A 0 ( x ) a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.

Diagonalization and rationalization of algebraic Laurent series

Boris Adamczewski, Jason P. Bell (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime p the reduction modulo p of the diagonal of a multivariate algebraic power series f with integer coefficients is an algebraic power series of degree at most p A and height at most A p A , where A is an effective constant that only...

Some properties complementary to Brualdi-Li matrices

Chuanlong Wang, Xuerong Yong (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper we derive new properties complementary to an 2 n × 2 n Brualdi-Li tournament matrix B 2 n . We show that B 2 n has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of B 2 n is also determined. Related results obtained in previous articles are proven to be corollaries.

Weak polynomial identities and their applications

Vesselin Drensky (2021)

Communications in Mathematics

Similarity:

Let R be an associative algebra over a field K generated by a vector subspace V . The polynomial f ( x 1 , ... , x n ) of the free associative algebra K x 1 , x 2 , ... is a weak polynomial identity for the pair ( R , V ) if it vanishes in R when evaluated on V . We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of...

The mean values of logarithms of algebraic integers

Artūras Dubickas (1998)

Journal de théorie des nombres de Bordeaux

Similarity:

Let α be an algebraic integer of degree d with conjugates α 1 = α , α 2 , , α d . In the paper we give a lower bound for the mean value M p ( α ) = 1 d i = 1 d | log | α i | | p p when α is not a root of unity and p > 1 .

Polynomial Imaginary Decompositions for Finite Separable Extensions

Adam Grygiel (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let K be a field and let L = K[ξ] be a finite field extension of K of degree m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials u , . . . , u m - 1 K [ X , . . . , X m - 1 ] such that f ( j = 0 m - 1 ξ j X j ) = j = 0 m - 1 ξ j u j . A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and f ≠ 0, then u , . . . , u m - 1 have no common divisor in K [ X , . . . , X m - 1 ] of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several...