Displaying similar documents to “Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids”

An improved regularity criteria for the MHD system based on two components of the solution

Zujin Zhang, Yali Zhang (2021)

Applications of Mathematics

Similarity:

As observed by Yamazaki, the third component b 3 of the magnetic field can be estimated by the corresponding component u 3 of the velocity field in L λ ( 2 λ 6 ) norm. This leads him to establish regularity criterion involving u 3 , j 3 or u 3 , ω 3 . Noticing that λ can be greater than 6 in this paper, we can improve previous results.

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

Complex series and connected sets

B. Jasek

Similarity:

CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO Σ 1 , Σ 2 , Σ 3 , Σ 4 INESSENTIAL RESTRICTIONOF GENERALITY ...............................................................................................................................................................

Generalized versions of Ilmanen lemma: Insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for a normed linear space X , if f 1 : X is continuous and semiconvex with modulus ω , f 2 : X is continuous and semiconcave with modulus ω and f 1 f 2 , then there exists f C 1 , ω ( X ) such that f 1 f f 2 . Using this result we prove a generalization of Ilmanen lemma (which deals with the case ω ( t ) = t ) to the case of an arbitrary nontrivial modulus ω . This generalization (where a C l o c 1 , ω function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n &gt; 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .

On the Schröder equation

M. Kuczma

Similarity:

CONTENTSPART IIntroduction............................................................................................... 31. General solution.................................................................................. 42. Preliminaries and notation................................................................ 53. C p solutions in *................................................ 74. Change of variables..............................................................................