Displaying similar documents to “On supercharacter theoretic generalizations of monomial groups and Artin's conjecture”

The Cohen-Lenstra heuristics, moments and p j -ranks of some groups

Christophe Delaunay, Frédéric Jouhet (2014)

Acta Arithmetica

Similarity:

This article deals with the coherence of the model given by the Cohen-Lenstra heuristic philosophy for class groups and also for their generalizations to Tate-Shafarevich groups. More precisely, our first goal is to extend a previous result due to É. Fouvry and J. Klüners which proves that a conjecture provided by the Cohen-Lenstra philosophy implies another such conjecture. As a consequence of our work, we can deduce, for example, a conjecture for the probability laws of p j -ranks of...

K ( π , 1 ) conjecture for Artin groups

Luis Paris (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The purpose of this paper is to put together a large amount of results on the K ( π , 1 ) conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts,...

On the Davenport constant and group algebras

Daniel Smertnig (2010)

Colloquium Mathematicae

Similarity:

For a finite abelian group G and a splitting field K of G, let (G,K) denote the largest integer l ∈ ℕ for which there is a sequence S = g · . . . · g l over G such that ( X g - a ) · . . . · ( X g l - a l ) 0 K [ G ] for all a , . . . , a l K × . If (G) denotes the Davenport constant of G, then there is the straightforward inequality (G) - 1 ≤ (G,K). Equality holds for a variety of groups, and a conjecture of W. Gao et al. states that equality holds for all groups. We offer further groups for which equality holds, but we also give the first examples of groups G for...

On the generalized vanishing conjecture

Zhenzhen Feng, Xiaosong Sun (2019)

Czechoslovak Mathematical Journal

Similarity:

We show that the GVC (generalized vanishing conjecture) holds for the differential operator Λ = ( x - Φ ( y ) ) y and all polynomials P ( x , y ) , where Φ ( t ) is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.

Regularity of sets with constant intrinsic normal in a class of Carnot groups

Marco Marchi (2014)

Annales de l’institut Fourier

Similarity:

In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type ” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano...

Homotopy invariance of higher signatures and 3 -manifold groups

Michel Matthey, Hervé Oyono-Oyono, Wolfgang Pitsch (2008)

Bulletin de la Société Mathématique de France

Similarity:

For closed oriented manifolds, we establish oriented homotopy invariance of higher signatures that come from the fundamental group of a large class of orientable 3 -manifolds, including the “piecewise geometric” ones in the sense of Thurston. In particular, this class, that will be carefully described, is the class of all orientable 3 -manifolds if the Thurston Geometrization Conjecture is true. In fact, for this type of groups, we show that the Baum-Connes Conjecture With Coefficients...

Results related to Huppert’s ρ - σ conjecture

Xia Xu, Yong Yang (2023)

Czechoslovak Mathematical Journal

Similarity:

We improve a few results related to Huppert’s ρ - σ conjecture. We also generalize a result about the covering number of character degrees to arbitrary finite groups.

Deformation theory and finite simple quotients of triangle groups I

Michael Larsen, Alexander Lubotzky, Claude Marion (2014)

Journal of the European Mathematical Society

Similarity:

Let 2 a b c with μ = 1 / a + 1 / b + 1 / c < 1 and let T = T a , b , c = x , y , z : x a = y b = z c = x y z = 1 be the corresponding hyperbolic triangle group. Many papers have been dedicated to the following question: what are the finite (simple) groups which appear as quotients of T ? (Classically, for ( a , b , c ) = ( 2 , 3 , 7 ) and more recently also for general ( a , b , c ) .) These papers have used either explicit constructive methods or probabilistic ones. The goal of this paper is to present a new approach based on the theory of representation varieties (via deformation theory). As a corollary we essentially...

A problem of Kollár and Larsen on finite linear groups and crepant resolutions

Robert Guralnick, Pham Tiep (2012)

Journal of the European Mathematical Society

Similarity:

The notion of age of elements of complex linear groups was introduced by M. Reid and is of importance in algebraic geometry, in particular in the study of crepant resolutions and of quotients of Calabi–Yau varieties. In this paper, we solve a problem raised by J. Kollár and M. Larsen on the structure of finite irreducible linear groups generated by elements of age 1 . More generally, we bound the dimension of finite irreducible linear groups generated by elements of bounded deviation....

The strength of the projective Martin conjecture

C. T. Chong, Wei Wang, Liang Yu (2010)

Fundamenta Mathematicae

Similarity:

We show that Martin’s conjecture on Π¹₁ functions uniformly T -order preserving on a cone implies Π¹₁ Turing Determinacy over ZF + DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant Π ¹ 2 n + 1 functions is equivalent over ZFC to Σ ¹ 2 n + 2 -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π¹₁ functions implies the consistency of the existence of a Woodin cardinal.

A geometric construction for spectrally arbitrary sign pattern matrices and the 2 n -conjecture

Dipak Jadhav, Rajendra Deore (2023)

Czechoslovak Mathematical Journal

Similarity:

We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to 2 n -conjecture. We determine that the 2 n -conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least n - 1 nonzero entries.

On the Brocard-Ramanujan problem and generalizations

Andrzej Dąbrowski (2012)

Colloquium Mathematicae

Similarity:

Let p i denote the ith prime. We conjecture that there are precisely 28 solutions to the equation n ² - 1 = p α p k α k in positive integers n and α₁,..., α k . This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).

On a number theoretic conjecture on positive integral points in a 5-dimensional tetrahedron and a sharp estimate of the Dickman–De Bruijn function

Ke-Pao Lin, Xue Luo, Stephen S.-T. Yau, Huaiqing Zuo (2014)

Journal of the European Mathematical Society

Similarity:

It is well known that getting the estimate of integral points in right-angled simplices is equivalent to getting the estimate of Dickman-De Bruijn function ψ ( x , y ) which is the number of positive integers x and free of prime factors > y . Motivating from the Yau Geometry Conjecture, the third author formulated the Number Theoretic Conjecture which gives a sharp polynomial upper estimate that counts the number of positive integral points in n-dimensional ( n 3 ) real right-angled simplices. In this...