Displaying similar documents to “Combination of t-norms and their conorms”

Exact l 1 penalty function for nonsmooth multiobjective interval-valued problems

Julie Khatri, Ashish Kumar Prasad (2024)

Kybernetika

Similarity:

Our objective in this article is to explore the idea of an unconstrained problem using the exact l 1 penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP ρ ) with the exact l 1 penalty function. The...

Stochastic optimization problems with second order stochastic dominance constraints via Wasserstein metric

Vlasta Kaňková, Vadim Omelčenko (2018)

Kybernetika

Similarity:

Optimization problems with stochastic dominance constraints are helpful to many real-life applications. We can recall e. g., problems of portfolio selection or problems connected with energy production. The above mentioned constraints are very suitable because they guarantee a solution fulfilling partial order between utility functions in a given subsystem 𝒰 of the utility functions. Especially, considering 𝒰 : = 𝒰 1 (where 𝒰 1 is a system of non decreasing concave nonnegative utility functions)...

Saddle point criteria for second order η -approximated vector optimization problems

Anurag Jayswal, Shalini Jha, Sarita Choudhury (2016)

Kybernetika

Similarity:

The purpose of this paper is to apply second order η -approximation method introduced to optimization theory by Antczak [2] to obtain a new second order η -saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order η -saddle point and the second order η -Lagrange function are defined for the second order η -approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution...

Minimizing and maximizing a linear objective function under a fuzzy max - * relational equation and an inequality constraint

Zofia Matusiewicz (2022)

Kybernetika

Similarity:

This paper provides an extension of results connected with the problem of the optimization of a linear objective function subject to max - * fuzzy relational equations and an inequality constraint, where * is an operation. This research is important because the knowledge and the algorithms presented in the paper can be used in various optimization processes. Previous articles describe an important problem of minimizing a linear objective function under a fuzzy max - * relational equation and an...

Linearization techniques for 𝕃 See PDF-control problems and dynamic programming principles in classical and 𝕃 See PDF-control problems

Dan Goreac, Oana-Silvia Serea (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The aim of the paper is to provide a linearization approach to the 𝕃 See PDF-control problems. We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the dynamic programming principle. Then, we use the 𝕃 p See PDF approach and the associated linear formulations. This seems to be the most appropriate tool for treating 𝕃 See PDF problems in continuous and...

Derivatives of Hadamard type in scalar constrained optimization

Karel Pastor (2017)

Kybernetika

Similarity:

Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order optimality condition for the constrained vector problem in terms of Hadamard derivatives. We will consider its special case for a scalar problem and show some corollaries for example for -stable at feasible point functions. Then we show the advantages of obtained results with respect to the previously obtained results.

Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization

Da-Ke Gu, Da-Wei Zhang (2020)

Kybernetika

Similarity:

This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure....

New hybrid conjugate gradient method for nonlinear optimization with application to image restoration problems

Youcef Elhamam Hemici, Samia Khelladi, Djamel Benterki (2024)

Kybernetika

Similarity:

The conjugate gradient method is one of the most effective algorithm for unconstrained nonlinear optimization problems. This is due to the fact that it does not need a lot of storage memory and its simple structure properties, which motivate us to propose a new hybrid conjugate gradient method through a convex combination of β k R M I L and β k H S . We compute the convex parameter θ k using the Newton direction. Global convergence is established through the strong Wolfe conditions. Numerical experiments...

Optimization problem under two-sided (max, +)/(min, +) inequality constraints

Karel Zimmermann (2020)

Applications of Mathematics

Similarity:

( max , + ) -linear functions are functions which can be expressed as the maximum of a finite number of linear functions of one variable having the form f ( x 1 , , x h ) = max j ( a j + x j ) , where a j , j = 1 , , h , are real numbers. Similarly ( min , + ) -linear functions are defined. We will consider optimization problems in which the set of feasible solutions is the solution set of a finite inequality system, where the inequalities have ( max , + ) -linear functions of variables x on one side and ( min , + ) -linear functions of variables y on the other side....

Properties of unique information

Johannes Rauh, Maik Schünemann, Jürgen Jost (2021)

Kybernetika

Similarity:

We study the unique information function U I ( T : X Y ) defined by Bertschinger et al. within the framework of information decompositions. In particular, we study uniqueness and support of the solutions to the convex optimization problem underlying the definition of U I . We identify sufficient conditions for non-uniqueness of solutions with full support in terms of conditional independence constraints and in terms of the cardinalities of T , X and Y . Our results are based on a reformulation of the first...