The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Role of the Harnack extension principle in the Kurzweil-Stieltjes integral”

The L r Henstock-Kurzweil integral

Paul M. Musial, Yoram Sagher (2004)

Studia Mathematica

Similarity:

We present a method of integration along the lines of the Henstock-Kurzweil integral. All L r -derivatives are integrable in this method.

A necessary condition for HK-integrability of the Fourier sine transform function

Juan H. Arredondo, Manuel Bernal, Maria G. Morales (2025)

Czechoslovak Mathematical Journal

Similarity:

The paper is concerned with integrability of the Fourier sine transform function when f BV 0 ( ) , where BV 0 ( ) is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of f to be integrable in the Henstock-Kurzweil sense, it is necessary that f / x L 1 ( ) . We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.

Henstock-Kurzweil integral on BV sets

Jan Malý, Washek Frank Pfeffer (2016)

Mathematica Bohemica

Similarity:

The generalized Riemann integral of Pfeffer (1991) is defined on all bounded BV subsets of n , but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of σ -finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of BV sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect...

Continuity in the Alexiewicz norm

Erik Talvila (2006)

Mathematica Bohemica

Similarity:

If f is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of f is f = sup I | I f | where the supremum is taken over all intervals I . Define the translation τ x by τ x f ( y ) = f ( y - x ) . Then τ x f - f tends to 0 as x tends to 0 , i.e., f is continuous in the Alexiewicz norm. For particular functions, τ x f - f can tend to 0 arbitrarily slowly. In general, τ x f - f osc f | x | as x 0 , where osc f is the oscillation of f . It is shown that if F is a primitive of f then τ x F - F f | x | . An example shows that the function y τ x F ( y ) - F ( y ) need not be in L 1 . However, if...

Cauchy's residue theorem for a class of real valued functions

Branko Sarić (2010)

Czechoslovak Mathematical Journal

Similarity:

Let [ a , b ] be an interval in and let F be a real valued function defined at the endpoints of [ a , b ] and with a certain number of discontinuities within [ a , b ] . Assuming F to be differentiable on a set [ a , b ] E to the derivative f , where E is a subset of [ a , b ] at whose points F can take values ± or not be defined at all, we adopt the convention that F and f are equal to 0 at all points of E and show that 𝒦ℋ -vt a b f = F ( b ) - F ( a ) , where 𝒦ℋ -vt denotes the total value of the integral. The paper ends with a few examples that illustrate the...

Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral

Salvador Sánchez-Perales, Francisco J. Mendoza-Torres (2020)

Czechoslovak Mathematical Journal

Similarity:

In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation - y ' ' + q y = f , where q and f are Henstock-Kurzweil integrable functions on [ a , b ] . Results presented in this article are generalizations of the classical results for the Lebesgue integral.

On the existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals

Aneta Sikorska-Nowak (2004)

Annales Polonici Mathematici

Similarity:

We prove some existence theorems for nonlinear integral equations of the Urysohn type x ( t ) = φ ( t ) + λ 0 a f ( t , s , x ( s ) ) d s and Volterra type x ( t ) = φ ( t ) + 0 t f ( t , s , x ( s ) ) d s , t I a = [ 0 , a ] , where f and φ are functions with values in Banach spaces. Our fundamental tools are: measures of noncompactness and properties of the Henstock-Kurzweil integral.