Displaying similar documents to “Some characterization of locally nonconical convex sets”

Free locally convex spaces and L -retracts

Rodrigo Hidalgo Linares, Oleg Okunev (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the relation of L -equivalence defined between Tychonoff spaces, that is, we study the topological isomorphisms of their respective free locally convex spaces. We introduce the concept of an L -retract in a Tychonoff space in terms of the existence of a special kind of simultaneous extensions of continuous functions, explore the relation of this concept with the Dugundji extension theorem, and find some conditions that allow us to identify L -retracts in various classes of topological...

A note on the commutator of two operators on a locally convex space

Edvard Kramar (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Denote by C the commutator A B - B A of two bounded operators A and B acting on a locally convex topological vector space. If A C - C A = 0 , we show that C is a quasinilpotent operator and we prove that if A C - C A is a compact operator, then C is a Riesz operator.

Operations between sets in geometry

Richard J. Gardner, Daniel Hug, Wolfgang Weil (2013)

Journal of the European Mathematical Society

Similarity:

An investigation is launched into the fundamental characteristics of operations on and between sets, with a focus on compact convex sets and star sets (compact sets star-shaped with respect to the origin) in n -dimensional Euclidean space n . It is proved that if n 2 , with three trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in the Hausdorff metric, G L ( n ) covariant, and associative if and only if it is L p addition for some 1 p . It is also demonstrated...

Convex integration with constraints and applications to phase transitions and partial differential equations

Stefan Müller, Vladimír Šverák (1999)

Journal of the European Mathematical Society

Similarity:

We study solutions of first order partial differential relations D u K , where u : Ω n m is a Lipschitz map and K is a bounded set in m × n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of D u and second we replace Gromov’s P −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our...

Product property for capacities in N

Mirosław Baran, Leokadia Bialas-Ciez (2012)

Annales Polonici Mathematici

Similarity:

The paper deals with logarithmic capacities, an important tool in pluripotential theory. We show that a class of capacities, which contains the L-capacity, has the following product property: C ν ( E × E ) = m i n ( C ν ( E ) , C ν ( E ) ) , where E j and ν j are respectively a compact set and a norm in N j (j = 1,2), and ν is a norm in N + N , ν = ν₁⊕ₚ ν₂ with some 1 ≤ p ≤ ∞. For a convex subset E of N , denote by C(E) the standard L-capacity and by ω E the minimal width of E, that is, the minimal Euclidean distance between two supporting hyperplanes...

The Spaces of Closed Convex Sets in Euclidean Spaces with the Fell Topology

Katsuro Sakai, Zhongqiang Yang (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let C o n v F ( ) be the space of all non-empty closed convex sets in Euclidean space ℝ ⁿ endowed with the Fell topology. We prove that C o n v F ( ) × Q for every n > 1 whereas C o n v F ( ) × .

More on exposed points and extremal points of convex sets in n and Hilbert space

Stoyu T. Barov (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let 𝕍 be a separable real Hilbert space, k with k < dim 𝕍 , and let B be convex and closed in 𝕍 . Let 𝒫 be a collection of linear k -subspaces of 𝕍 . A point w B is called exposed by 𝒫 if there is a P 𝒫 so that ( w + P ) B = { w } . We show that, under some natural conditions, B can be reconstituted as the convex hull of the closure of all its exposed by 𝒫 points whenever 𝒫 is dense and G δ . In addition, we discuss the question when the set of exposed by some 𝒫 points forms a G δ -set.

On the Schröder equation

M. Kuczma

Similarity:

CONTENTSPART IIntroduction............................................................................................... 31. General solution.................................................................................. 42. Preliminaries and notation................................................................ 53. C p solutions in *................................................ 74. Change of variables..............................................................................

A characterization of sets in 2 with DC distance function

Dušan Pokorný, Luděk Zajíček (2022)

Czechoslovak Mathematical Journal

Similarity:

We give a complete characterization of closed sets F 2 whose distance function d F : = dist ( · , F ) is DC (i.e., is the difference of two convex functions on 2 ). Using this characterization, a number of properties of such sets is proved.

Injectivity of sections of convex harmonic mappings and convolution theorems

Liulan Li, Saminathan Ponnusamy (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider the class 0 of sense-preserving harmonic functions f = h + g ¯ defined in the unit disk | z | < 1 and normalized so that h ( 0 ) = 0 = h ' ( 0 ) - 1 and g ( 0 ) = 0 = g ' ( 0 ) , where h and g are analytic in the unit disk. In the first part of the article we present two classes 𝒫 H 0 ( α ) and 𝒢 H 0 ( β ) of functions from 0 and show that if f 𝒫 H 0 ( α ) and F 𝒢 H 0 ( β ) , then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α and β are satisfied. In the second part we study the harmonic sections...

Quantitative stability for sumsets in n

Alessio Figalli, David Jerison (2015)

Journal of the European Mathematical Society

Similarity:

Given a measurable set A n of positive measure, it is not difficult to show that | A + A | = | 2 A | if and only if A is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If ( | A + A | - | 2 A | ) / | A | is small, is A close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between A and its convex hull in terms of ( | A + A | - | 2 A | ) / | A | .

On the ψ₂-behaviour of linear functionals on isotropic convex bodies

G. Paouris (2005)

Studia Mathematica

Similarity:

The slicing problem can be reduced to the study of isotropic convex bodies K with d i a m ( K ) c n L K , where L K is the isotropic constant. We study the ψ₂-behaviour of linear functionals on this class of bodies. It is proved that | | · , θ | | ψ C L K for all θ in a subset U of S n - 1 with measure σ(U) ≥ 1 - exp(-c√n). However, there exist isotropic convex bodies K with uniformly bounded geometric distance from the Euclidean ball, such that m a x θ S n - 1 | | · , θ | | ψ c n L K . In a different direction, we show that good average ψ₂-behaviour of linear functionals...