Displaying similar documents to “Relación entre conos de direcciones decrecientes y conos de direcciones de descenso.”

Una caracterización dual de optimalidad para optimización convexa.

José Manuel Gutiérrez Díez (1984)

Trabajos de Estadística e Investigación Operativa

Similarity:

Mediante el uso de una generalización de los subgradientes, se demuestra una condición dual de optimalidad necesaria y suficiente para Optimización Convexa. No se requiere la cualificación de restricciones en el caso finito-dimensional.

Una aplicación de la teoría de Dubovickii y Miljutin a la programación semi-infinita convexa.

Marco A. Lopez Cerdà, Enriqueta Vercher González (1984)

Qüestiió

Similarity:

En este trabajo aplicamos la teoría de Dubovickii y Miljutin para deducir una condición necesaria de optimalidad relativa al problema de Programación Semi-Infinita convexa no diferenciable, asumiendo la cualificación de Slater. Se introduce así un nuevo procedimiento para verificar la validez de esta cualificación.

Condiciones necesarias de optimalidad en programación semi-infinita lineal: cualificaciones de restricciones y propiedades del conjunto posible.

Teresa León, Enriqueta Vercher (1994)

Qüestiió

Similarity:

En este trabajo se establece una caracterización de las soluciones óptimas para el problema continuo de Programación Semi-Infinita Lineal, donde el conjunto de índices es un compacto de R. Para la demostración de la condición necesaria de optimalidad se ha utilizado una extensión de la cualificación de restricciones de Mangasarian-Fromovitz. Hemos probado que dicha cualificación es imprescindible para asegurar que no hay desigualdades inestables en el conjunto posible y para que existan...

Soluciones no dominadas en problemas multiobjetivo.

Luis Coladas Uría (1981)

Trabajos de Estadística e Investigación Operativa

Similarity:

La Teoría de Estructuras de Dominación, introducida por P. L. Yu como nuevo procedimiento de solución a problemas multiobjetivo, presenta bastantes lagunas, debidas sin duda a la novedad del tema. Nos hemos propuesto en este trabajo caracterizar completamente los puntos no dominados, por distintos procedimientos, así como seleccionar entre ellos un subconjunto más deseable ("soluciones propias"). Se abordan también condiciones para soluciones no dominadas en el espacio de decisiones....

Representación finita de sistemas de infinitas inecuaciones.

Miguel Angel Goberna Torrent, Marco A. López Cerdá, Jesús T. Pastor Ciurana (1982)

Trabajos de Estadística e Investigación Operativa

Similarity:

Dado un Problema de Programación Semi-Infinita, si se puede obtener una representación finita del conjunto factible, pueden aplicarse para resolver el problema los métodos de programación con restricciones finitas. En la primera parte se caracterizan los sistemas lineales infinitos que pueden ser reducidos a un sistema finito equivalente, dándose además condiciones suficientes y métodos para efectuar tal reducción. En la segunda parte se establecen diferentes procedimientos...

Soluciones propias en la teoría de la dominación.

Luis Coladas Uría (1983)

Trabajos de Estadística e Investigación Operativa

Similarity:

Se relacionan varios conceptos de "punto propiamente no dominado", introducidos para eliminar soluciones no dominadas "poco deseables", dándose condiciones para las distintas implicaciones y equivalencias.

Condiciones suficientes para la existencia de solución óptima en un programa semi-infinito.

Miguel Angel Goberna Torrent, Jesús T. Pastor Ciurana (1983)

Trabajos de Estadística e Investigación Operativa

Similarity:

Bajo condiciones muy generales, la acotación del conjunto factible en un problema de Programación Semi-Infinita garantiza la existencia de solución óptima del problema. Por ello, se estudian en la primera parte condiciones suficientes para la acotación del conjunto de soluciones de un sistema de infinitas ecuaciones. En la segunda parte se dan condiciones de diversa índole que involucran a la función objetivo de distintas maneras, a saber, a través de la función de Lagrange asociada...

Funciones penalidad y lagrangianos aumentados.

Eduardo Ramos Méndez (1981)

Trabajos de Estadística e Investigación Operativa

Similarity:

Por medio de un conjunto de propiedades se caracteriza una amplia familia de funciones que pueden emplearse como penalidad para la resolución numérica de un problema de programación matemática. A partir de ellas se construye un algoritmo de penalizaciones demostrando su convergencia a un punto factible óptimo. Se estudia la situación de los mínimos sin restricciones respecto de la región factible, la monotonía de la sucesión de valores de la función auxiliar y se dan varias cotas de...