On the density for the solution of a Burgers-type SPDE
Pierre-Luc Morien (1999)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Pierre-Luc Morien (1999)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Emmanuel Gobet (2002)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Bogdan Iftimie, Étienne Pardoux, Andrey Piatnitski (2008)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
This paper deals with the homogenization problem for a one-dimensional parabolic PDE with random stationary mixing coefficients in the presence of a large zero order term. We show that under a proper choice of the scaling factor for the said zero order terms, the family of solutions of the studied problem converges in law, and describe the limit process. It should be noted that the limit dynamics remain random.
Mireille Bossy, Mamadou Cissé, Denis Talay (2011)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.
Kijung Lee, Carl Mueller, Jie Xiong (2009)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
For a superprocess under a stochastic flow in one dimension, we prove that it has a density with respect to the Lebesgue measure. A stochastic partial differential equation is derived for the density. The regularity of the solution is then proved by using Krylov’s -theory for linear SPDE.
Thierry Delmotte (1999)
Revista Matemática Iberoamericana
Similarity:
On a graph, we give a characterization of a parabolic Harnack inequality and Gaussian estimates for reversible Markov chains by geometric properties (volume regularity and Poincaré inequality).