Displaying similar documents to “Lyapunov analysis of sliding motions: Application to bounded control.”

Almost sure properties of controlled diffusions and worst case properties of deterministic systems

Martino Bardi, Annalisa Cesaroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We compare a general controlled diffusion process with a deterministic system where a second controller drives the disturbance against the first controller. We show that the two models are equivalent with respect to two properties: the viability (or controlled invariance, or weak invariance) of closed smooth sets, and the existence of a smooth control Lyapunov function ensuring the stabilizability of the system at an equilibrium.


Double-stepped adaptive control for hybrid systems with unknown Markov jumps and stochastic noises

Shuping Tan, Ji-Feng Zhang (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper is concerned with the sampled-data based adaptive linear quadratic (LQ) control of hybrid systems with both unmeasurable Markov jump processes and stochastic noises. By the least matching error estimation algorithm, parameter estimates are presented. By a double-step (DS) sampling approach and the certainty equivalence principle, a sampled-data based adaptive LQ control is designed. The DS-approach is characterized by a comparatively large estimation step for parameter estimation...

Protector control: Extension to a class of nonlinear distributed systems

Youssef Qaraai, Abdes Samed Bernoussi (2010)

International Journal of Applied Mathematics and Computer Science

Similarity:

We present an extension of the protector control scheme introduced for the linear case in a previous work to a class of nonlinear systems. The systems considered are assumed to have a finite propagation velocity while the initial state is subject to a spreading disturbance. We characterize such a control first by using the remediability approach to the resulting nonlinear delay system, and then by coupling families of transformations and the delay approach. To illustrate this work, we...

Control of an induction motor using sliding mode linearization

Erik Etien, Sébastien Cauet, Laurent Rambault, Gérard Champenois (2002)

International Journal of Applied Mathematics and Computer Science

Similarity:

Nonlinear control of the squirrel induction motor is designed using sliding mode theory. The developed approach leads to the design of a sliding mode controller in order to linearize the behaviour of an induction motor. The second problem described in the paper is decoupling between two physical outputs: the rotor speed and the rotor flux modulus. The sliding mode tools allow us to separate the control from these two outputs. To take account of parametric variations, a model-based approach...