Displaying similar documents to “Integral G -structures of Wach modules. ( G -structures entières et modules de Wach.)”

Sur les représentations de dimension finie de la super algèbre de Lie 𝔤𝔩 ( m , n )

Caroline Gruson (2005-2006)

Séminaire Bourbaki

Similarity:

La catégorie des modules de dimension finie sur la super algèbre de Lie 𝔤𝔩 ( m , n ) n’est pas semi-simple. Elle se décompose en une infinité de blocs, dont on cherche depuis les travaux de Kac en 1977 à comprendre la structure. Vera Serganova apporte une réponse presque complète à ce problème, formulée selon le cercle d’idées introduites par Bernstein, Gelfand et Gelfand pour étudier la catégorie 𝒪 dans le cas classique ; ne disposant pas pour 𝔤𝔩 ( m , n ) d’analogues des théorèmes de Kostant et de Borel-Weil-Bott,...

Correspondances de Hecke, action de Galois et la conjecture d’André–Oort

Rutger Noot (2004-2005)

Séminaire Bourbaki

Similarity:

Soient M une variété de Shimura, Z M fermée et irréductible et S Z ( ) un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, Z est une sous-variété de type Hodge. Par exemple, si M est un espace de modules de variétés abéliennes, S est un ensemble de points correspondant à des variétés de type CM et Z doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev...

Lemme fondamental et endoscopie, une approche géométrique

Jean-François Dat (2004-2005)

Séminaire Bourbaki

Similarity:

Le “principe de fonctorialité”, conjecturé par Langlands à la fin des années 60, est un moyen remarquablement synthétique d’unifier et exprimer certains liens profonds entre formes automorphes, arithmétique et géométrie algébrique. Son apparente simplicité contraste fortement avec la difficulté des techniques utilisées pour l’aborder. Parmi celles-ci, la stabilisation de la formule des traces d’Arthur–Selberg bute depuis 25 ans sur une conjecture d’analyse harmonique sur des groupes...

La conjecture de Birch et Swinnerton-Dyer 𝐩 -adique

Pierre Colmez (2002-2003)

Séminaire Bourbaki

Similarity:

La conjecture de Birch et Swinnerton-Dyer prédit que l’ordre r du zéro en s = 1 de la fonction L d’une courbe elliptique E définie sur 𝐐 est égal au rang r du groupe de ses points rationnels. On sait démontrer cette conjecture si r = 0 ou 1 , mais on n’a aucun résultat reliant r et r si r 2 . Nous expliquerons comment Kato démontre que la fonction L p -adique attachée à E a, en s = 1 , un zéro d’ordre supérieur ou égal à r .

Catégories dérivées et géométrie birationnelle

Raphaël Rouquier (2004-2005)

Séminaire Bourbaki

Similarity:

À l’origine conçue comme un outil technique, la catégorie dérivée des faisceaux cohérents d’une variété algébrique est apparue lors de ces dix dernières années comme un invariant important dans l’étude birationnelle des variétés algébriques. Des problèmes d’invariance birationnelle et de minimisation de la catégorie dérivée sont apparus, inspirés par la conjecture homologique de symétrie miroir de Kontsevich et le programme de Mori de modèles minimaux pour les variétés algébriques. Nous...

Motifs de dimension finie

Yves André (2003-2004)

Séminaire Bourbaki

Similarity:

On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure...

La conjecture de modularité de Serre : le cas de conducteur 1

Jean-Pierre Wintenberger (2005-2006)

Séminaire Bourbaki

Similarity:

La conjecture dit qu’une représentation continue irréductible impaire du groupe de Galois de  Q dans un espace vectoriel de dimension  2 sur un corps fini F de caractéristique  p provient d’une forme modulaire. C. Khare vient de la prouver pour les représentations qui sont non ramifiées hors de  p .

Compactification de l’espace des modules des variétés abéliennes principalement polarisées

Michel Brion (2005-2006)

Séminaire Bourbaki

Similarity:

Les variétés abéliennes principalement polarisées admettent un espace des modules grossier qu’on sait compactifier de plusieurs façons (compactification de Satake, compactifications toroïdales). Cependant, le problème s’est posé de construire une compactification “modulaire”en termes d’objets géométriques qui permettent de décrire les points du bord. On souhaite aussi compactifier l’application de Torelli qui à chaque courbe algébrique, projective et lisse, associe sa jacobienne. L’exposé...