Displaying similar documents to “Majorantes surharmoniques minimales d'une fonction continue”

Fonctions harmoniques et fonctions finement harmoniques

Bent Fuglede (1974)

Annales de l'institut Fourier

Similarity:

On montre d’abord que toute fonction finement [hyper]harmonique dans un ouvert du plan R 2 est [hyper]harmonique au sens ordinaire. On utilise pour cela un nouveau principe de minimum pour un domaine borné, U , du plan, avec des limites fines à la frontière, mais sans aucune hypothèse de minoration pour la fonction hyperharmonique donnée, u , dans U . Puis on étend ce dernier principe au cas de U finement ouvert (et borné) et u finement hyperharmonique. Aucun de ces résultats ne s’étend aux...

Quelques propriétés des fonctions surharmoniques associées à une équation uniformément elliptique de la forme L u = - i x i ( j a i j u x j ) = 0

Rose-Marie Hervé (1965)

Annales de l'institut Fourier

Similarity:

Si l’on prend comme fonctions harmoniques les solutions locales de l’équation, les fonctions surharmoniques associées sont telles que les potentiels de support ponctuel donné sont proportionnels et que l’effilement ne dépend pas de l’opérateur L  ; on détermine aussi la plus grande minorante harmonique dans ω et W 1 , 2 ( ω ) .

Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien

Alano Ancona (1978)

Annales de l'institut Fourier

Similarity:

L’article étudie le compactifié de Martin d’un domaine lipschitzien Ω relativement à un opérateur elliptique à coefficients hödériens L  ; on étend aux fonctions L -harmoniques et aux fonctions L -harmoniques adjointes sur Ω une estimation de L -Carleson pour le cas L = Δ , puis on établit un “principe de Harnack à la frontière” comparant l’allure à la frontière de fonctions L -harmoniques 0 sur Ω . Conséquences : Q Ω , et normalisée en A 0 Ω  ; un théorème de type Fatou-Doob sur l’existence de limites...

Sur la notion de flux de Nakai dans un espace harmonique sans potentiel positif

Jean Guillerme (1978)

Annales de l'institut Fourier

Similarity:

Soit h une fonction harmonique définie hors d’un compact d’un espace harmonique de Brelot sans potentiel > 0 , on définit directement, c’est-à-dire sans les théorèmes de Nakaï, le flux de h relativement à une fonction harmonique fixée u , définie hors d’un compact. On donne ensuite une construction de la mesure ν intervenant dans les théorèmes de Nakaï, sans utiliser la théorie de Riesz-Schauder.

Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel

Linda Naïm (1957)

Annales de l'institut Fourier

Similarity:

Le présent travail montre le rôle de la frontière de Martin dans deux questions importantes de la théorie du potentiel : allure à la frontière des fonctions surharmoniques > 0 et problème de Dirichlet. On considère essentiellement un “espace de Green” Ω , pourvu par définition d’une fonction de Green G , et dont la réunion avec la frontière de Martin Δ est l’espace de Martin Ω ^ . Pour tout point x 0 Δ , on sait que la fonction de Green “normalisée” G ( x , y ) G ( x , y 0 ) ( y Ω , y 0 fixé Ω ) , notée aussi K ( x , y ) , admet pour x x 0 une...