The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Behavior of biharmonic functions on Wiener's and Royden's compactifications”

Hörmander systems and harmonic morphisms

Elisabetta Barletta (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Given a Hörmander system X = { X 1 , , X m } on a domain Ω 𝐑 n we show that any subelliptic harmonic morphism φ from Ω into a ν -dimensional riemannian manifold N is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also φ is a submersion provided that ν m and X has rank m . If Ω = 𝐇 n (the Heisenberg group) and X = 1 2 L α + L α ¯ , 1 2 i L α - L α ¯ , where L α ¯ = / z ¯ α - i z α / t is the Lewy operator, then a smooth map φ : Ω N is a subelliptic harmonic morphism if and only if φ π : ( C ( 𝐇 n ) , F θ 0 ) N is a harmonic morphism, where S 1 C ( 𝐇 n ) π 𝐇 n is the canonical circle bundle and F θ 0 ...

On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold

John C. Taylor (1978)

Annales de l'institut Fourier

Similarity:

The Martin compactification of a bounded Lipschitz domain D R n is shown to be D for a large class of uniformly elliptic second order partial differential operators on D . Let X be an open Riemannian manifold and let M X be open relatively compact, connected, with Lipschitz boundary. Then M is the Martin compactification of M associated with the restriction to M of the Laplace-Beltrami operator on X . Consequently an open Riemannian manifold X has at most one compactification which...

Biharmonic morphisms

Mustapha Chadli, Mohamed El Kadiri, Sabah Haddad (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( X , ) and ( X ' , ' ) be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from ( X , ) to ( X ' , ' ) is a continuous map from X to X ' which preserves the biharmonic structures of X and X ' . In the present work we study this notion and characterize in some cases the biharmonic morphisms between X and X ' in terms of harmonic morphisms between the harmonic spaces associated with ( X , ) and ( X ' , ' ) and the coupling kernels of them.

Duality on vector-valued weighted harmonic Bergman spaces

Salvador Pérez-Esteva (1996)

Studia Mathematica

Similarity:

We study the duals of the spaces A p α ( X ) of harmonic functions in the unit ball of n with values in a Banach space X, belonging to the Bochner L p space with weight ( 1 - | x | ) α , denoted by L p α ( X ) . For 0 < α < p-1 we construct continuous projections onto A p α ( X ) providing a decomposition L p α ( X ) = A p α ( X ) + M p α ( X ) . We discuss the conditions on p, α and X for which A p α ( X ) * = A q α ( X * ) and M p α ( X ) * = M q α ( X * ) , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.

On separately subharmonic functions (Lelong’s problem)

A. Sadullaev (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The main result of the present paper is : every separately-subharmonic function u ( x , y ) , which is harmonic in y , can be represented locally as a sum two functions, u = u * + U , where U is subharmonic and u * is harmonic in y , subharmonic in x and harmonic in ( x , y ) outside of some nowhere dense set S .