Displaying similar documents to “Erratum : Spaces of type H + C

Asymmetric tie-points and almost clopen subsets of *

Alan S. Dow, Saharon Shelah (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A tie-point of compact space is analogous to a cut-point: the complement of the point falls apart into two relatively clopen non-compact subsets. We review some of the many consistency results that have depended on the construction of tie-points of * . One especially important application, due to Veličković, was to the existence of nontrivial involutions on * . A tie-point of * has been called symmetric if it is the unique fixed point of an involution. We define the notion of an almost...

Special sets of reals and weak forms of normality on Isbell--Mrówka spaces

Vinicius de Oliveira Rodrigues, Victor dos Santos Ronchim, Paul J. Szeptycki (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We recall some classical results relating normality and some natural weakenings of normality in Ψ -spaces over almost disjoint families of branches in the Cantor tree to special sets of reals like Q -sets, λ -sets and σ -sets. We introduce a new class of special sets of reals which corresponds to the corresponding almost disjoint family of branches being 0 -separated. This new class fits between λ -sets and perfectly meager sets. We also discuss conditions for an almost disjoint family 𝒜 being...

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

Similarity:

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative...

On L p integrability and convergence of trigonometric series

Dansheng Yu, Ping Zhou, Songping Zhou (2007)

Studia Mathematica

Similarity:

We first give a necessary and sufficient condition for x - γ ϕ ( x ) L p , 1 < p < ∞, 1/p - 1 < γ < 1/p, where ϕ(x) is the sum of either k = 1 a k c o s k x or k = 1 b k s i n k x , under the condition that λₙ (where λₙ is aₙ or bₙ respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients λₙ and the sum function ϕ(x) under the condition that λₙ ∈ MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of ϕ(x)...

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations

Fabio Nicola (2010)

Studia Mathematica

Similarity:

We study Fourier integral operators of Hörmander’s type acting on the spaces L p ( d ) c o m p , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in L p . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on L p ( d ) c o m p if the mapping x x Φ ( x , η ) is constant on the fibres, of codimension r,...

On the UMD constant of the space N

Adam Osękowski (2016)

Colloquium Mathematicae

Similarity:

Let N ≥ 2 be a given integer. Suppose that d f = ( d f ) n 0 is a martingale difference sequence with values in N and let ( ε ) n 0 be a deterministic sequence of signs. The paper contains the proof of the estimate ( s u p n 0 | | k = 0 n ε k d f k | | N 1 ) ( l n N + l n ( 3 l n N ) ) / ( 1 - ( 2 l n N ) - 1 ) s u p n 0 | | k = 0 n d f k | | N . It is shown that this result is asymptotically sharp in the sense that the least constant C N in the above estimate satisfies l i m N C N / l n N = 1 . The novelty in the proof is the explicit verification of the ζ-convexity of the space N .

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

Almost Prüfer v-multiplication domains and the ring D + X D S [ X ]

Qing Li (2010)

Colloquium Mathematicae

Similarity:

This paper is a continuation of the investigation of almost Prüfer v-multiplication domains (APVMDs) begun by Li [Algebra Colloq., to appear]. We show that an integral domain D is an APVMD if and only if D is a locally APVMD and D is well behaved. We also prove that D is an APVMD if and only if the integral closure D̅ of D is a PVMD, D ⊆ D̅ is a root extension and D is t-linked under D̅. We introduce the notion of an almost t-splitting set. D ( S ) denotes the ring D + X D S [ X ] , where S is a multiplicatively...

On some representations of almost everywhere continuous functions on m

Ewa Strońska (2006)

Colloquium Mathematicae

Similarity:

It is proved that the following conditions are equivalent: (a) f is an almost everywhere continuous function on m ; (b) f = g + h, where g,h are strongly quasicontinuous on m ; (c) f = c + gh, where c ∈ ℝ and g,h are strongly quasicontinuous on m .

Induced almost continuous functions on hyperspaces

Alejandro Illanes (2006)

Colloquium Mathematicae

Similarity:

For a metric continuum X, let C(X) (resp., 2 X ) be the hyperspace of subcontinua (resp., nonempty closed subsets) of X. Let f: X → Y be an almost continuous function. Let C(f): C(X) → C(Y) and 2 f : 2 X 2 Y be the induced functions given by C ( f ) ( A ) = c l Y ( f ( A ) ) and 2 f ( A ) = c l Y ( f ( A ) ) . In this paper, we prove that: • If 2 f is almost continuous, then f is continuous. • If C(f) is almost continuous and X is locally connected, then f is continuous. • If X is not locally connected, then there exists an almost continuous function f: X → [0,1]...

Lacunary series in Q K spaces

Hasi Wulan, Kehe Zhu (2007)

Studia Mathematica

Similarity:

Under mild conditions on the weight function K we characterize lacunary series in the so-called K spaces.

A note on average behaviour of the Fourier coefficients of j th symmetric power L -function over certain sparse sequence of positive integers

Youjun Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let j 2 be a given integer. Let H k * be the set of all normalized primitive holomorphic cusp forms of even integral weight k 2 for the full modulo group SL ( 2 , ) . For f H k * , denote by λ sym j f ( n ) the n th normalized Fourier coefficient of j th symmetric power L -function ( L ( s , sym j f ) ) attached to f . We are interested in the average behaviour of the sum n = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( n ) , where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

The harmonic Cesáro and Copson operators on the spaces L p ( ) , 1 ≤ p ≤ 2

Ferenc Móricz (2002)

Studia Mathematica

Similarity:

The harmonic Cesàro operator is defined for a function f in L p ( ) for some 1 ≤ p < ∞ by setting ( f ) ( x ) : = x ( f ( u ) / u ) d u for x > 0 and ( f ) ( x ) : = - - x ( f ( u ) / u ) d u for x < 0; the harmonic Copson operator ℂ* is defined for a function f in L ¹ l o c ( ) by setting * ( f ) ( x ) : = ( 1 / x ) x f ( u ) d u for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense. We present rigorous proofs of the following two commuting relations: (i) If f L p ( ) for some 1 ≤ p ≤ 2, then ( ( f ) ) ( t ) = * ( f ̂ ) ( t ) a.e., where f̂ denotes the Fourier transform of f. (ii) If f L p ( ) for some 1 < p ≤ 2, then...