Displaying similar documents to “Approximation of harmonic functions”

Generalized Hölder type spaces of harmonic functions in the unit ball and half space

Alexey Karapetyants, Joel Esteban Restrepo (2020)

Czechoslovak Mathematical Journal

Similarity:

We study spaces of Hölder type functions harmonic in the unit ball and half space with some smoothness conditions up to the boundary. The first type is the Hölder type space of harmonic functions with prescribed modulus of continuity ω = ω ( h ) and the second is the variable exponent harmonic Hölder space with the continuity modulus | h | λ ( · ) . We give a characterization of functions in these spaces in terms of the behavior of their derivatives near the boundary.

Uniform bounds for quotients of Green functions on C 1 , 1 -domains

H. Hueber, M. Sieveking (1982)

Annales de l'institut Fourier

Similarity:

Let Δ u = Σ i 2 x i 2 , L u = Σ i , j a i j 2 x i x j u + Σ i b i x i u + c u be elliptic operators with Hölder continuous coefficients on a bounded domain Ω R n of class C 1 , 1 . There is a constant c > 0 depending only on the Hölder norms of the coefficients of L and its constant of ellipticity such that c - 1 G Δ Ω G L Ω c G Δ Ω on Ω × Ω , where γ Δ Ω (resp. G L Ω ) are the Green functions of Δ (resp. L ) on Ω .

On the fusion problem for degenerate elliptic equations II

Stephen M. Buckley, Pekka Koskela (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let F be a relatively closed subset of a Euclidean domain Ω . We investigate when solutions u to certain elliptic equations on Ω F are restrictions of solutions on all of Ω . Specifically, we show that if F is not too large, and u has a suitable decay rate near F , then u can be so extended.

A class of functions containing polyharmonic functions in ℝⁿ

V. Anandam, M. Damlakhi (2003)

Annales Polonici Mathematici

Similarity:

Some properties of the functions of the form v ( x ) = i = 0 m | x | i h i ( x ) in ℝⁿ, n ≥ 2, where each h i is a harmonic function defined outside a compact set, are obtained using the harmonic measures.

Landau's theorem for p-harmonic mappings in several variables

Sh. Chen, S. Ponnusamy, X. Wang (2012)

Annales Polonici Mathematici

Similarity:

A 2p-times continuously differentiable complex-valued function f = u + iv in a domain D ⊆ ℂ is p-harmonic if f satisfies the p-harmonic equation Δ p f = 0 , where p (≥ 1) is a positive integer and Δ represents the complex Laplacian operator. If Ω ⊂ ℂⁿ is a domain, then a function f : Ω m is said to be p-harmonic in Ω if each component function f i (i∈ 1,...,m) of f = ( f , . . . , f m ) is p-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch’s theorem for a class of p-harmonic mappings...

On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold

John C. Taylor (1978)

Annales de l'institut Fourier

Similarity:

The Martin compactification of a bounded Lipschitz domain D R n is shown to be D for a large class of uniformly elliptic second order partial differential operators on D . Let X be an open Riemannian manifold and let M X be open relatively compact, connected, with Lipschitz boundary. Then M is the Martin compactification of M associated with the restriction to M of the Laplace-Beltrami operator on X . Consequently an open Riemannian manifold X has at most one compactification which...

Duality on vector-valued weighted harmonic Bergman spaces

Salvador Pérez-Esteva (1996)

Studia Mathematica

Similarity:

We study the duals of the spaces A p α ( X ) of harmonic functions in the unit ball of n with values in a Banach space X, belonging to the Bochner L p space with weight ( 1 - | x | ) α , denoted by L p α ( X ) . For 0 < α < p-1 we construct continuous projections onto A p α ( X ) providing a decomposition L p α ( X ) = A p α ( X ) + M p α ( X ) . We discuss the conditions on p, α and X for which A p α ( X ) * = A q α ( X * ) and M p α ( X ) * = M q α ( X * ) , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.

On separately subharmonic functions (Lelong’s problem)

A. Sadullaev (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The main result of the present paper is : every separately-subharmonic function u ( x , y ) , which is harmonic in y , can be represented locally as a sum two functions, u = u * + U , where U is subharmonic and u * is harmonic in y , subharmonic in x and harmonic in ( x , y ) outside of some nowhere dense set S .