The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Lieu discriminant d’un germe analytique de corang 1 de , 0 2 vers , 0 2

Courbes analytiques sur un germe d'espace analytique et applications

Jean-Claude Tougeron (1976)

Annales de l'institut Fourier

Similarity:

Soit f : X Y un germe d’applications algébriques entre deux germes de variétés algébriques complexes. Soient O X ' O Y les anneaux de germe de fonctions holomorphes sur X et Y respectivement : f * : O Y O X l’homomorphisme déduit de f . Nous démontrons, en utilisant quelques propriétés élémentaires des courbes analytiques sur un germe d’espace analytique et sous certaines hypothèses sur X et Y , que f * induit une application ouverte de O Y sur f * ( O Y ) et que f * ( O Y ) est fermé dans O X (pour les topologies de Krull).

Sur l'existence d'intégrales premières pour un germe de forme de Pfaff

Robert Moussu (1976)

Annales de l'institut Fourier

Similarity:

Soit ω ( x ) = i = 1 n a i ( x ) d x i un germe en 0 R n d’une forme de Pfaff, complètement intégrable ( ω d ω = 0 ) de classe C ou analytique, dont 0 est un zéro algébriquement isolé ( dim R E n / [ a 1 , a 2 , ... , a n ] < ) . La matrice a i x j ( 0 ) est symétrique ; soit q w la forme quadratique correspondante. On montre dans ce travail : i) que ω possède une intégrale première formelle (i.e., j ω = g d f , g ( 0 ) 0 f et g sont des séries formelles). ii) que, si ω est analytique et rang q w 2 , ω possède une intégrale première analytique (i.e. ω = g d f , g ( 0 ) 0 , g , f 0 n ). iii) que, si...

Le théorème de M. Sebastiani pour une singularité quasi-homogène isolée

Jean-Pierre Françoise (1979)

Annales de l'institut Fourier

Similarity:

Dans cet article, on donne une démonstration explicite du théorème de M. Sebastiani, sur la liberté du C { p } module G = Ω n / d P d Ω n - 2 associé à un germe à singularité isolée, lorsque P est quasi homogène. Il se distingue, dans ce cas, une base et les fonctions composantes d’un élément de G sont produites par un algorithme dont on prouve la convergence avec le théorème des voisinages privilégiés de B. Malgrange.

Les conditions de Whitney impliquent μ ( * ) constant

Joël Briançon, Jean-Paul Speder (1976)

Annales de l'institut Fourier

Similarity:

La condition “ μ ( * ) constant” est une condition numérique d’équisingularité introduite par B. Teissier. Celui-ci a démontré dans (Astérisque, 7 & 8 (1973) II. Théorème 3.9) que cette condition implique les conditions de Whitney, nous montrons ici la réciproque.

Sur un théorème de Dulac

Laurent Stolovitch (1994)

Annales de l'institut Fourier

Similarity:

Nous considérons les champs de vecteurs analytiques de ( n , 0 ) de partie linéaire diagonale non nulle et dont les valeurs propres λ i vérifient des relations de résonances toutes engendrées par une seule relation ( r , λ ) = 0 pour un certain vecteur r n non nul. Nous montrons que, dans un système de coordonnées locales holomorphes au voisinages de 0 n , de tels champs de vecteurs se “mettent" sous une forme normale , tout en exhibant des variétés invariantes, si l’on fait une hypothèse de . Nos résultats généralisent,...

Sur un théorème général de probabilité

Alfred Rényi (1949)

Annales de l'institut Fourier

Similarity:

L’auteur généralise un théorème qu’il a déjà donné (J. de Math. 28 (949)). Envisageant un champ de probabilités au sens de Kolmogoroff, il élargit puis étudie la notion de discrépance, en introduisant la discrépance D y ( x ) d’une variable aléatoire x par rapport à une autre variable aléatoire y  ; elle se réduit au coefficient de corrélation si x et y sont des variables caractéristiques. Il introduit aussi la notion de suite de variables aléatoires “presque indépendantes deux à deux”, avec...