Displaying similar documents to “La plus petite majorante surharmonique et son rapport avec l'existence des fonctions entières de type exponentiel jouant le rôle de multiplicateurs”

Sur les nombres premiers généralisés de Beurling. Preuve d'une conjecture de Bateman et Diamond

Jean-Pierre Kahane (1997)

Journal de théorie des nombres de Bordeaux

Similarity:

Soit P une partie discrète et multiplicativement libre de la demi-droite ouverte ] 1 , [ , et N le semi-groupe unitaire engendré par P . Les éléments de P s’appellent nombres premiers généralisés et ceux de N entiers généralisés. Les fonctions de décompte correspondantes sont désignées P ( x ) et N ( x ). Le problème de Beurling consiste à donner des conditions sur N ( x ) qui entrainent le “ théorème des nombres premiers ” P ( x ) x / log x ( x ) . En posant N ( x ) = D x + x ϵ ( x ) , la condition de Beurling est ϵ ( x ) = O ( ( log x ) - a ) avec a > 3 2 , et il y a un contre-exemple avec...

Ordre de grandeur de L ( 1 , χ ) et de L ' ( 1 , χ )

Jean-René Joly, Claude Moser (1979)

Annales de l'institut Fourier

Similarity:

On étudie sommairement la distribution des valeurs de L ' ( 1 , χ ) ( χ : caractère de Dirichlet primitif réel) et on constate qu’on a en général L ' ( 1 , χ ) < π 2 / 6 ; on démontre par ailleurs que L ( 1 , χ ) > c ( ϵ ) / log k ( k : conducteur de χ ; c ( ϵ ) : constante positive effectivement calculable.

Extension d'un théorème de Carleman

Pierre Lelong (1962)

Annales de l'institut Fourier

Similarity:

On étend au cas de n variables la solution d’un problème de T. Carleman, et on l’applique à la définition de classes quasi-analytiques de fonctions dérivables f ( x 1 , ... , x n ) . Parmi les classes définies sur un ouvert par les conditions | D ( α ) f M ( α ) , ( α ) indice de dérivation multiple, on caractérise celles, C [ M ( α ) ] , qui ne peuvent contenir de fonction f 0 , à support compact. Extension aux classes définies à partir d’une suite P x k ( f ) d’opérateurs polynômes différentiels, homogènes, à coefficients constants. ...

Solution à croissance du second problème de Cousin dans n

Henri Skoda (1971)

Annales de l'institut Fourier

Similarity:

Étant donné une hypersurface X de n , on majore la croissance des fonctions entières définissant X . On en déduit qu’une fonction méromorphe f dans n s’écrit comme quotient de deux fonctions entières g et h , dont la croissance est liée à celle de  f .

Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines

Ahmed Zeriahi (1987)

Annales de l'institut Fourier

Similarity:

Soit K un compact polynomialement convexe de C n et V K son “potentiel logarithmique extrémal” dans C n . Supposons que K est régulier (i.e. V K continue) et soit f une fonction holomorphe sur un voisinage de K . On construit alors une suite { P } 1 de polynôme de n variables complexes avec deg ( P ) pour 1 , telle que l’erreur d’approximation max z K | f ( z ) - P ( z ) | soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de f par rapport à K et du degré de convergence . Ce résultat est ensuite utilisé...

Sur les suites de fonctions analytiques

André Hirschowitz (1970)

Annales de l'institut Fourier

Similarity:

Soient E un e.v.t., F un sous-espace de E , f une fonction analytique de C dans E , telle que F contienne l’image de C * . On cherche les valeurs que f peut prendre en zéro puis on fait la liaison entre ce problème et un problème de prolongement analytique.