Displaying similar documents to “Croissance des fonctions plurisousharmoniques en dimension infinie”

Extension d'un théorème de Carleman

Pierre Lelong (1962)

Annales de l'institut Fourier

Similarity:

On étend au cas de n variables la solution d’un problème de T. Carleman, et on l’applique à la définition de classes quasi-analytiques de fonctions dérivables f ( x 1 , ... , x n ) . Parmi les classes définies sur un ouvert par les conditions | D ( α ) f M ( α ) , ( α ) indice de dérivation multiple, on caractérise celles, C [ M ( α ) ] , qui ne peuvent contenir de fonction f 0 , à support compact. Extension aux classes définies à partir d’une suite P x k ( f ) d’opérateurs polynômes différentiels, homogènes, à coefficients constants. ...

Sur les entiers inférieurs à x ayant plus de log ( x ) diviseurs

Marc Deléglise, Jean-Louis Nicolas (1994)

Journal de théorie des nombres de Bordeaux

Similarity:

Let τ ( n ) be the number of divisors of n ; let us define S λ ( x ) = C a r d n x ; τ ( n ) ( log x ) λ log 2 if λ 1 C a r d n x ; τ ( n ) < ( log x ) λ log 2 if λ < 1 It has been shown that, if we set f ( λ , x ) = x ( log x ) λ log λ - λ + 1 log log x the quotient S λ ( x ) / f ( λ , x ) is bounded for λ fixed. The aim of this paper is to give an explicit value for the inferior and superior limits of this quotient when λ 2 . For instance, when λ = 1 / log 2 , we prove lim inf S λ ( x ) f ( λ , x ) = 0 . 938278681143 and lim inf S λ ( x ) f ( λ , x ) = 1 . 148126773469

Solution à croissance du second problème de Cousin dans n

Henri Skoda (1971)

Annales de l'institut Fourier

Similarity:

Étant donné une hypersurface X de n , on majore la croissance des fonctions entières définissant X . On en déduit qu’une fonction méromorphe f dans n s’écrit comme quotient de deux fonctions entières g et h , dont la croissance est liée à celle de  f .

Ouverts stablement convexes par rapport à un opérateur différentiel

André Unterberger (1972)

Annales de l'institut Fourier

Similarity:

On montre l’équivalence entre certaines inégalités “à la Carleman” et certaines propriétés de régularité des solutions à support compact d’équations aux dérivées partielles à coefficients constants : P ( D ) étant un opérateur différentiel sur R n , on en déduit une caractérisation, en termes d’inégalités L 2 , des ouverts Ω de R n tels que Ω × R k soit P ( D ) -convexe pour tout entier k .