Displaying similar documents to “Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables”

Sur la méthode de Van der Corput pour les sommes d'exponentielles

Marouan Redouaby (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

Pour majorer la somme d’exponentielle m = M + 1 2 M e ( T F ( m / M ) ) , F : [1,2] est une fonction “presque monomiale”, M est une entier grand et T un réel grand devant M 4 , nous étudions le procédé A k B A D , A et B désignent comme d’habitude les transformations A et B de Van der Corput [2], et où D désigne le double grand crible appliqué dans l’esprit de Fouvry et Iwaniec [1]. Nos résultats complètent le tableau 17.1 de [5] (voir également [4]) et sont résumés dans le corollaire 2 ci-dessous.

Un théorème de Spitzer-Stone fort pour une matrice de Toeplitz à  symbole singulier défini par une classe de fonctions analytiques

Philippe Rambour, Jean-Marc Rinkel (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Dans cet article nous donnons une formule pour les coefficients de l’inverse des matrices de Toeplitz respectivement de symboles f ( e i θ ) = ( 1 - cos θ ) | f 1 ( e i θ ) | 2 (cas singulier) et | f 1 ( e i θ ) | 2 (cas régulier) où f 1 est une fonction appartenant à  une classe de fonctions holomorphes sur un disque ouvert contenant le tore 𝕋 et sans zéro sur 𝕋 . Un cas particulier défini par f 1 = Q P P et Q sont des polynômes sans zéro sur 𝕋 est traité. Dans le cas où le symbole est singulier, cette formule présente l’intérêt d’avoir un second ordre....

Singularité de séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres

Driss Essouabri (1997)

Annales de l'institut Fourier

Similarity:

Soit P [ X 1 , ... , X n ] un polynôme. On appelle série de Dirichlet associée à P la fonction : s Z ( P ; s ) = m * n P ( m ) - s ( s ) . Dans cet article nous étudions l’existence et les propriétés du prolongement méromorphe d’une telle série sous l’hypothèse qu’il existe B ] 0 , 1 [ tel que : i) P ( x ) + quand | | x | | + et x [ B , + [ n et ii) d ( Z ( P ) , [ B , + [ n ) > 0 Z ( P ) = { z n | P ( z ) = 0 } . Cette hypothèse est probablement optimale et en tout cas contient strictement toutes les classes de polynômes déjà traitées antérieurement. Sous cette hypothèse nos principaux résultats sont : l’existence du prolongement méromorphe...

Non prolongement unique des solutions d'opérateurs «somme de carrés»

Hajer Bahouri (1986)

Annales de l'institut Fourier

Similarity:

Dans ce travail, nous avons montré que si P = i = 1 n - 1 x i 2 , où les x i sont des champs de vecteurs C linéairement independants dans un ouvert Ω de R n tels que l’algèbre de Lie qu’ils engendrent soit de rang maximum en tout point et la forme volume qu’on leur associe soit de classe 4 en un point x 0 de Ω , alors il existe un voisinage ouvert V de x 0 et une fonction a C ( V ) tels que P + a possède pas la propriété de prolongement unique.

Applications arithmétiques de l'étude des valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme

Philippe Cassou-Noguès (1981)

Annales de l'institut Fourier

Similarity:

Nous étudions les fonctions p -adiques associées à des séries du type Z ( P , Q , ξ ) ( s ) = n N r Q ( n ) ξ n P ( n ) - s dans certains cas, où elles admettent un prolongement méromorphe à C avec un nombre fini de pôles et des valeurs aux entiers négatifs algébriques. On retrouve comme cas particulier les fonctions L p -adiques des corps totalement réels et les fonctions Γ -multiples p -adiques.

Nombres de Bell et somme de factorielles

Daniel Barsky, Bénali Benzaghou (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Dj. Kurepa a conjecturé que pour tout nombre premier impair, p , la somme n = 0 p - 1 n ! n’est pas divisible par p . Cette somme est reliée aux nombres de Bell qui apparaissent en combinatoire énumérative. Nous donnons une expression du n -ième nombre de Bell modulo p comme la trace de la puissance n -ième d’un élément fixe dans l’extension d’Artin-Schreier de degré p du corps premier à p éléments. Cette expression permet de démontrer la conjecture de Kurepa en la ramenant à un problème d’algèbre linéaire. ...