The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “L'anneau de Milnor d'un corps local à corps résiduel parfait”

Décomposition du Galois-module des entiers d'une extension cyclique de degré premier d'un corps de nombres ou d'un corps local

Françoise Bertrandias (1979)

Annales de l'institut Fourier

Similarity:

Soit A un anneau de Dedekind, de corps des fractions K , et soit L une extension galoisienne de K , dont le groupe de Galois G est cyclique d’ordre premier. On note B la clôture intégrale de A dans L . Il existe une unique décomposition du A [ G ] -module B en somme directe de sous-modules indécomposables. On détermine cette décomposition lorsque K est un corps local ou un corps de nombres. Le résultat dépend d’une part des caractères irréductibles de G sur K , d’autre part des nombres de ramification...

Substitutions commutatives de séries formelles

François Laubie (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

L’étude des systèmes dynamiques non archimédiens initiée par J. Lubin conduit à déterminer la ramification de séries à coefficients dans un corps fini k , qui commutent entre elles pour la loi . Dans cet article nous traitons le cas des sous-groupes abéliens de t + t 2 k [ [ t ] ] qui correspondent par le foncteur corps de normes aux extensions abéliennes des extensions finies de p , dont la ramification se stabilise dès le début.

Unités et classes dans les extensions métabéliennes de degré n s sur un corps de nombres algébriques

Jean-François Jaulent (1981)

Annales de l'institut Fourier

Similarity:

Soit N une extension cyclique -primaire d’un corps de nombres K . On suppose que N est métabélienne sur un sous-corps H d’indice n dans K , pour un n étranger à  ; on note G son groupe de Galois de T un relèvement dans G du quotient Gal ( K / H ) . On étudie la structure galoisienne des groupes de -classes de N et on s’intéresse en particulier à leurs ψ -composantes, lorsque ψ parcourt le groupe des caractères -adiques irréductibles de T . Le choix d’un générateur convenable θ dans l’idéal d’augmentation...

Structure galoisienne des anneaux d'entiers d'extensions sauvagement ramifiées. II

Philippe Cassou-Noguès, Jacques Queyrut (1982)

Annales de l'institut Fourier

Similarity:

Soient G le groupe de Galois d’une extension galoisienne finie, N , d’un corps de nombres K et S un ensemble de places de Q , contenant les places de K sauvagement ramifiées dans N . Nous démontrons, dans de nombreux cas particuliers, une conjecture faite par J. Queyrut dans un article précédent : l’ordre de la classe de l’anneau des entiers de N , dans le sous-groupe de torsion du groupe de Grothendieck des Z [ G ] -module localement libres en dehors de S , est égal à 1 ou 2, selon le signe des...

Descente et parallélogramme galoisiens

Richard Massy, Sylvie Monier-Derviaux (1999)

Journal de théorie des nombres de Bordeaux

Similarity:

Soit p un nombre premier impair. Soit D / J une p -extension galoisienne de corps ne contenant pas les racines p -ièmes de l’unité : J μ p = 1 . Notons G le groupe de Galois de D / J et Φ ( G ) son sous-groupe de Frattini. Via une notion de descente galoisienne et les parallélogrammes galoisiens qu’elle induit, nous construisons ici toutes les extensions D / J telles que Φ ( G ) soit d’ordre p .

Une formule de Riemann-Hurwitz pour le groupe de Selmer d'une courbe elliptique

Alexis Michel (1993)

Annales de l'institut Fourier

Similarity:

Soit E une courbe elliptique avec multiplication complexe, définie sur un corps de nombres F . Soit p un nombre premier. En ajoutant certains points de p -torsion de E à F , on construit une p -extension F de F . On associe à F un groupe de Selmer. Pour une p -extension galoisienne de F , Wingberg a montré, sous les conjectures arithmétiques usuelles, un analogue de la formule de Riemann-Hurwitz pour le corang du groupe de Selmer en haut de la tour. Nous donnons une nouvelle preuve...