The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur la structure des groupes de classes relatives. Avec un appendice d'exemples numériques par T. Berthier”

Unités et classes dans les extensions métabéliennes de degré n s sur un corps de nombres algébriques

Jean-François Jaulent (1981)

Annales de l'institut Fourier

Similarity:

Soit N une extension cyclique -primaire d’un corps de nombres K . On suppose que N est métabélienne sur un sous-corps H d’indice n dans K , pour un n étranger à  ; on note G son groupe de Galois de T un relèvement dans G du quotient Gal ( K / H ) . On étudie la structure galoisienne des groupes de -classes de N et on s’intéresse en particulier à leurs ψ -composantes, lorsque ψ parcourt le groupe des caractères -adiques irréductibles de T . Le choix d’un générateur convenable θ dans l’idéal d’augmentation...

Classes de Steinitz d’extensions à groupe de Galois A 4

Marjory Godin, Bouchaïb Sodaïgui (2002)

Journal de théorie des nombres de Bordeaux

Similarity:

Soient k un corps de nombres et 𝒞 l ( k ) son groupe des classes. Une extension de k à groupe de Galois isomorphe au groupe alterné A 4 est dite alternée. Soit E / k une extension cyclique de degré 3 . On calcule la classe de Steinitz, dans 𝒞 l ( k ) , de toute extension alternée contenant E . Sous l’hypothèse que le nombre des classes de k est impair, on détermine l’ensemble de telles classes et on montre que c’est un sous-groupe de 𝒞 l ( k ) lorsque l’anneau des entiers de E est libre sur celui de k ou 3 ne divise...

Classes et unités des extensions cycliques réelles de degré 4 de 𝐐

Marie-Nicole Gras (1979)

Annales de l'institut Fourier

Similarity:

Soit K une extension cyclique réelle de degré 4 de Q de sous-corps quadratique k . Nous déterminons le nombre de classes et les unités de K puis nous montrons que le problème de la “capitulation” de classes de k dans K est caractérisé par des propriétés élémentaires des unités de K . Nous avons obtenu une table numérique du nombre de classes, des unités ainsi que de l’éventuelle “capitulation” d’une classe, pour tous les corps K de conducteur f < 4000  ; nous en publions ici un extrait. ...

Annulation du groupe des -classes généralisées d’une extension abélienne réelle de degré premier à

Georges Gras (1979)

Annales de l'institut Fourier

Similarity:

Soit un nombre premier impair. Soit K une extension abélienne réelle de Q de degré premier à et soit G son groupe de Galois; soit φ ( φ 1 ) un caractère -adique irréductible de K . Soit M la -extension abélienne maximale de K non ramifiée en dehors de et soit 𝒜 le Z [ G ] -module Gal ( M / K ) ; 𝒜 φ (la φ -composante de 𝒜 ) est un module fini sur l’anneau des entiers Z ψ ' de Q ψ ' (corps des valeurs sur Q d’un caractère ψ ' de degré 1 divisant φ ). On construit explicitement pour tout n 0 un élément 𝒮 n de Z ψ ' qui annule...

Sur l’existence des corps biquadratiques K dont le groupe de Galois du deuxième 2 -corps de classes de Hilbert par rapport à K est semi-diédral

Abdelmalek Azizi, Ali Mouhib (2005)

Archivum Mathematicum

Similarity:

Let K be a biquadratic field, K 2 ( 1 ) be the Hilbert 2 -class field of K and K 2 ( 2 ) be the Hilbert 2 -class field of K 2 ( 1 ) . Our goal is to prove that there exists a biquadratic field K such that Gal ( K 2 ( 1 ) / K ) / 2 × / 2 and the group Gal ( K 2 ( 2 ) / K ) is semi-dihedral. Résumé. Soient K un corps biquadratique, K 2 ( 1 ) le 2 -corps de classes de Hilbert de K et K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) . Notre but est de prouver qu’il existe des corps biquadratiques réels K tels que le groupe Gal ( K 2 ( 1 ) / K ) est de type ( 2 , 2 ) et le groupe Gal ( K 2 ( 2 ) / K ) est semi-diédral.