The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sections du fibré déterminant sur l'espace de modules des faisceaux semi-stables de rang 2 sur le plan projectif”

Sur l’espace de modules des faisceaux semi stables de rang 2, de classes de Chern (0,3) sur 2

K. Hulek, Joseph Le Potier (1989)

Annales de l'institut Fourier

Similarity:

L’espace de modules M = M ( 0 , 3 ) des faisceaux semi-stables de rang 2, de classes de Chern (0,3) sur le plan projectif 2 est une variété projective irréductible et lisse de dimension 9. Dans M , les points qui ne proviennent pas d’un faisceau localement libre constituent une hypersurface M . Dans cet article, nous montrons que toute surface complété de M rencontre la frontière M , autrement dit qu’il n’existe pas de famille de fibrés vectoriels paramétrée par une surface complète de M . La démonstration...

Groupe de Picard des variétés de modules de faisceaux semi-stables sur 2 ( )

Jean-Marc Drezet (1988)

Annales de l'institut Fourier

Similarity:

Le sujet de cet article est le groupe de Picard de la variété de modules M ( r , c 1 , c 2 ) des faisceaux algébriques semi-stables de rang r et de classes de Chern c 1 , c 2 sur P 2 ( C ) . Le premier résultat est que M ( r , c 1 , c 2 ) est localement factorielle, ce qui permet d’identifier Pic ( M ( r , c 1 , c 2 ) ) et le groupe des classes d’équivalence linéaire des diviseurs de Weil de M ( r , c 1 , c 2 ) ) . Il existe une unique application δ : Q Q telle que dim ( M ( r , c 1 , c 2 ) ) > 0 si et seulement si ( c 2 - ( r - 1 ) c 1 2 / 2 r ) / r > δ ( c 1 / r ) . Si on a égalité, Pic ( M ( r , c 1 , c 2 ) ) est isomorphe à Z , et si l’inégalité est stricte, Pic ( M ( r , c 1 , c 2 ) ) est isomorphe à Z 2 ....

Fibrés uniformes de type ( 1 , 0 , . . . 0 , - 1 ) sur 2

Jean-Marc Drezet (1981)

Annales de l'institut Fourier

Similarity:

Dans cet article, on donne un début de classification des fibrés vectoriels algébriques uniformes de type de décomposition ( 1 , 0 , ... , 0 , - 1 ) sur P 2 . Les seuls tels fibrés de rang 4 sont les fibrés “évidents” et sont donc homogènes. Enfin, on montre qu’un fibré vectoriel uniforme de type ( 1 , 0 , ... , 0 , - 1 ) sur P 2 est stable si et seulement si ce fibré et son dual n’ont pas de sections globales non triviales.

𝒟 -modules et faisceaux pervers dont le support singulier est un croisement normal

André Galligo, Michel Granger, Philippe Maisonobe (1985)

Annales de l'institut Fourier

Similarity:

Dans cet article on étudie les 𝒟 -modules dont le support singulier est un croisement normal dans C n , par l’intermédiaire de la catégorie équivalente de faisceaux pervers. On montre qu’ils sont caractérisés, à isomorphisme près, par la donnée suivante : un hypercube constitué par des espaces vectoriels de dimension finie F I indexés par les parties de { 1 , ... , n } , et des applications linéaires F I F I { i } soumises à certaines conditions de commutativité et d’inversibilité. Ce résultat est exprimé sous forme...

Alcôves et p -rang des variétés abéliennes

Bao Chau Ngô, Alain Genestier (2002)

Annales de l’institut Fourier

Similarity:

On étudie la relation entre le p -rang des variétés abéliennes en caractéristique p et la stratification de Kottwitz-Rapoport de la fibre spéciale en p de l’espace de module des variétés abéliennes principalement polarisées avec structure de niveau de type Iwahori en p . En particulier, on démontre la densité du lieu ordinaire dans cette fibre spéciale.