Displaying similar documents to “The intersection of a curve with algebraic subgroups in a product of elliptic curves”

A Bogomolov property for curves modulo algebraic subgroups

Philipp Habegger (2009)

Bulletin de la Société Mathématique de France

Similarity:

Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least 2 . The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.

The distribution of powers of integers in algebraic number fields

Werner Georg Nowak, Johannes Schoißengeier (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For an arbitrary (not totally real) number field K of degree 3 , we ask how many perfect powers γ p of algebraic integers γ in K exist, such that μ ( τ ( γ p ) ) X for each embedding τ of K into the complex field. ( X a large real parameter, p 2 a fixed integer, and μ ( z ) = max ( | Re ( z ) | , | Im ( z ) | ) for any complex z .) This quantity is evaluated asymptotically in the form c p , K X n / p + R p , K ( X ) , with sharp estimates for the remainder R p , K ( X ) . The argument uses techniques from lattice point theory along with W. Schmidt’s multivariate extension of K.F. Roth’s result...

Algebraic independence over p

Peter Bundschuh, Kumiko Nishioka (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a power series n 1 ζ ( n ) x e ( n ) , where ( e ( n ) ) is a strictly increasing linear recurrence sequence of non-negative integers, and ( ζ ( n ) ) a sequence of roots of unity in ¯ p satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over p of the elements f ( α 1 ) , ... , f ( α t ) from p in terms of the distinct α 1 , ... , α t p satisfying 0 < | α τ | p < 1 for τ = 1 , ... , t . A striking application of our basic result says that, in the case e ( n ) = n , the set { f ( α ) | α p , 0 < | α | p < 1 } is algebraically independent over p if...

The distribution of the values of a rational function modulo a big prime

Alexandru Zaharescu (2003)

Journal de théorie des nombres de Bordeaux

Similarity:

Given a large prime number p and a rational function r ( X ) defined over 𝔽 p = / p , we investigate the size of the set x 𝔽 p : r ˜ ( x ) > r ˜ ( x + 1 ) , where r ˜ ( x ) and r ˜ ( x + 1 ) denote the least positive representatives of r ( x ) and r ( x + 1 ) in modulo p .

Geometric study of the beta-integers for a Perron number and mathematical quasicrystals

Jean-Pierre Gazeau, Jean-Louis Verger-Gaugry (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We investigate in a geometrical way the point sets of     obtained by the   β -numeration that are the   β -integers   β [ β ]   where   β   is a Perron number. We show that there exist two canonical cut-and-project schemes associated with the   β -numeration, allowing to lift up the   β -integers to some points of the lattice   m   ( m =   degree of   β ) lying about the dominant eigenspace of the companion matrix of   β  . When   β   is in particular a Pisot number, this framework gives another proof of the fact...

A group law on smooth real quartics having at least 3 real branches

Johan Huisman (2002)

Journal de théorie des nombres de Bordeaux

Similarity:

Let C be a smooth real quartic curve in 2 . Suppose that C has at least 3 real branches B 1 , B 2 , B 3 . Let B = B 1 × B 2 × B 3 and let O B . Let τ O be the map from B into the neutral component Jac ( C ) ( ) 0 of the set of real points of the jacobian of C , defined by letting τ O ( P ) be the divisor class of the divisor P i - O i . Then, τ O is a bijection. We show that this allows an explicit geometric description of the group law on Jac ( C ) ( ) 0 . It generalizes the classical geometric description of the group law on the neutral component of the set of real...