A calculus for finitely satisfiable formulas with identity.
Page 1 Next
Arthur M. Bullock, Hubert H. Schneider (1972)
Archiv für mathematische Logik und Grundlagenforschung
Donald A. Alton (1975)
Archiv für mathematische Logik und Grundlagenforschung
Melvin Fitting (1982)
Banach Center Publications
Osvald Demuth (1987)
Commentationes Mathematicae Universitatis Carolinae
Meer, Klaus, Michaux, Christian (1997)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Podzorov, S.Yu. (2008)
Sibirskij Matematicheskij Zhurnal
Michael Morley, Robert Soare (1975)
Fundamenta Mathematicae
Laurent Bienvenu, Noam Greenberg, Antonín Kučera, André Nies, Dan Turetsky (2016)
Journal of the European Mathematical Society
We introduce Oberwolfach randomness, a notion within Demuth’s framework of statistical tests with moving components; here the components’ movement has to be coherent across levels. We show that a ML-random set computes all -trivial sets if and only if it is not Oberwolfach random, and indeed that there is a -trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis, such as the...
T. G. McLaughlin (1972)
Compositio Mathematica
Klaus Ambos-Spies (1985)
Archiv für mathematische Logik und Grundlagenforschung
Luis E. Sanchis (1977)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
James Jones (1979)
Acta Arithmetica
F. Acquistapace, R. Benedetti (1990)
Inventiones mathematicae
Donald A. Alton (1975)
Archiv für mathematische Logik und Grundlagenforschung
Vesa Halava, Tero Harju, Hendrik Jan Hoogeboom, Michel Latteux (2005)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
We consider shifted equality sets of the form , where and are nonerasing morphisms and is a letter. We are interested in the family consisting of the languages , where is a coding and is a shifted equality set. We prove several closure properties for this family. Moreover, we show that every recursively enumerable language is a projection of a shifted equality set, that is, for some (nonerasing) morphisms and and a letter , where deletes the letters not in . Then we deduce...
Vesa Halava, Tero Harju, Hendrik Jan Hoogeboom, Michel Latteux (2010)
RAIRO - Theoretical Informatics and Applications
We consider shifted equality sets of the form EG(a,g1,g2) = {ω | g1(ω) = ag2(ω)}, where g1 and g2 are nonerasing morphisms and a is a letter. We are interested in the family consisting of the languages h(EG(J)), where h is a coding and (EG(J)) is a shifted equality set. We prove several closure properties for this family. Moreover, we show that every recursively enumerable language L ⊆ A* is a projection of a shifted equality set, that is, L = πA(EG(a,g1,g2)) for some (nonerasing) morphisms g1...
J. C. E. Dekker (1966)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Algebra i Logika
G. Criscuolo, E. Minicozzi, G. Trautteur (1975)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
R.G. Downey (1987)
Archiv für mathematische Logik und Grundlagenforschung
Page 1 Next