On free pseudo-complemented and relatively pseudo-complemented semi-lattices
The complexity of infinite words is considered from the point of view of a transformation with a Mealy machine that is the simplest model of a finite automaton transducer. We are mostly interested in algebraic properties of the underlying partially ordered set. Results considered with the existence of supremum, infimum, antichains, chains and density aspects are investigated.
The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ωPCP is undecidable for domain alphabets...
The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ωPCP is undecidable for domain alphabets...
In the infinite Post Correspondence Problem an instance (h,g) consists of two morphisms h and g, and the problem is to determine whether or not there exists an infinite word ω such that h(ω) = g(ω). This problem was shown to be undecidable by Ruohonen (1985) in general. Recently Blondel and Canterini (Theory Comput. Syst.36 (2003) 231–245) showed that this problem is undecidable for domain alphabets of size 105. Here we give a proof that the infinite Post Correspondence Problem is undecidable...