Page 1

Displaying 1 – 2 of 2

Showing per page

Fixpoint alternation: arithmetic, transition systems, and the binary tree

J. C. Bradfield (2010)

RAIRO - Theoretical Informatics and Applications

We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.

Currently displaying 1 – 2 of 2

Page 1