Induced pseudoorders
For an arbitrary infinite cardinal , we define classes of -cslender and -tslender modules as well as related classes of -hmodules and initiate a study of these classes.
Rational numbers are used to classify maximal almost disjoint (MAD) families of subsets of the integers. Combinatorial characterization of indestructibility of MAD families by the likes of Cohen, Miller and Sacks forcings are presented. Using these it is shown that Sacks indestructible MAD family exists in ZFC and that implies that there is a Cohen indestructible MAD family. It follows that a Cohen indestructible MAD family is in fact indestructible by Sacks and Miller forcings. A connection with...
The paper contains some sufficient conditions for Marczewski-Burstin representability of an algebra 𝓐 of sets which is isomorphic to 𝓟(X) for some X. We characterize those algebras of sets which are inner MB-representable and isomorphic to a power set. We consider connections between inner MB-representability and hull property of an algebra isomorphic to 𝓟 (X) and completeness of an associated quotient algebra. An example of an infinite universally MB-representable algebra is given.
This paper considers compositions of relations based on the notion of the afterset and the foreset, i. e., the subproduct, the superproduct and the square product introduced by Bandler and Kohout with modification proposed by De Baets and Kerre. There are proven all possible mixed pseudo-associativity properties of Bandler – Kohout compositions of relations.