Previous Page 8

Displaying 141 – 154 of 154

Showing per page

Tychonoff Products of Two-Element Sets and Some Weakenings of the Boolean Prime Ideal Theorem

Kyriakos Keremedis (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Let X be an infinite set, and (X) the Boolean algebra of subsets of X. We consider the following statements: BPI(X): Every proper filter of (X) can be extended to an ultrafilter. UF(X): (X) has a free ultrafilter. We will show in ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) that the following four statements are equivalent: (i) BPI(ω). (ii) The Tychonoff product 2 , where 2 is the discrete space 0,1, is compact. (iii) The Tychonoff product [ 0 , 1 ] is compact. (iv) In a Boolean algebra...

Universality of the μ-predictor

Christopher S. Hardin (2013)

Fundamenta Mathematicae

For suitable topological spaces X and Y, given a continuous function f:X → Y and a point x ∈ X, one can determine the value of f(x) from the values of f on a deleted neighborhood of x by taking the limit of f. If f is not required to be continuous, it is impossible to determine f(x) from this information (provided |Y| ≥ 2), but as the author and Alan Taylor showed in 2009, there is nevertheless a means of guessing f(x), called the μ-predictor, that will be correct except on a small set; specifically,...

When is 𝐍 Lindelöf?

Horst Herrlich, George E. Strecker (1997)

Commentationes Mathematicae Universitatis Carolinae

Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) is a Lindelöf space, (2) is a Lindelöf space, (3) is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of is separable, (6) in , a point x is in the closure of a set A iff there exists a sequence in A that converges to x , (7) a function f : is continuous at a point x iff f is sequentially continuous at x , (8)...

Currently displaying 141 – 154 of 154

Previous Page 8