O prvním Hilbertově problému (Hypotéza kontinua a axióm výběru)
Page 1 Next
Petr Vopěnka (1971)
Pokroky matematiky, fyziky a astronomie
William Wistar Comfort (1982)
Pokroky matematiky, fyziky a astronomie
Horst Herrlich, Paul Howard, Eleftherios Tachtsis (2015)
Bulletin of the Polish Academy of Sciences. Mathematics
We study the deductive strength of properties under basic set-theoretical operations of the subclass E-Fin of the Dedekind finite sets in set theory without the Axiom of Choice ( AC ), which consists of all E-finite sets, where a set X is called E-finite if for no proper subset Y of X is there a surjection f:Y → X.
Eric Hall, Kyriakos Keremedis (2013)
Bulletin of the Polish Academy of Sciences. Mathematics
(i) The statement P(ω) = “every partition of ℝ has size ≤ |ℝ|” is equivalent to the proposition R(ω) = “for every subspace Y of the Tychonoff product the restriction |Y = Y ∩ B: B ∈ of the standard clopen base of to Y has size ≤ |(ω)|”. (ii) In ZF, P(ω) does not imply “every partition of (ω) has a choice set”. (iii) Under P(ω) the following two statements are equivalent: (a) For every Boolean algebra of size ≤ |ℝ| every filter can be extended to an ultrafilter. (b) Every Boolean algebra of...
Eleftherios Tachtsis (2018)
Commentationes Mathematicae Universitatis Carolinae
In set theory without the axiom of choice (), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC (AC for linearly ordered families of nonempty sets)—and hence AC (AC for well-ordered families of nonempty sets)— (where is an uncountable regular cardinal), and “for every infinite set , there is a bijection ”, implies the statement “there exists a field such that every vector...
B. Fuchssteiner (1976/1977)
Semigroup forum
Kyriakos Keremedis (2018)
Commentationes Mathematicae Universitatis Carolinae
We study in ZF and in the class of spaces the web of implications/ non-implications between the notions of pseudocompactness, light compactness, countable compactness and some of their ZFC equivalents.
Paul Howard, Eleftherios Tachtsis (2016)
Fundamenta Mathematicae
We study the deductive strength of the following statements: 𝖱𝖱: every set has a rigid binary relation, 𝖧𝖱𝖱: every set has a hereditarily rigid binary relation, 𝖲𝖱𝖱: every set has a strongly rigid binary relation, in set theory without the Axiom of Choice. 𝖱𝖱 was recently formulated by J. D. Hamkins and J. Palumbo, and 𝖲𝖱𝖱 is a classical (non-trivial) 𝖹𝖥𝖢-result by P. Vopěnka, A. Pultr and Z. Hedrlín.
Jakub Jasinski, Ireneusz Recław (2008)
Colloquium Mathematicae
Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.
Horst Herrlich, Paul Howard, Eleftherios Tachtsis (2012)
Commentationes Mathematicae Universitatis Carolinae
A Russell set is a set which can be written as the union of a countable pairwise disjoint set of pairs no infinite subset of which has a choice function and a Russell cardinal is the cardinal number of a Russell set. We show that if a Russell cardinal has a ternary partition (see Section 1, Definition 2) then the Russell cardinal fails to have such a partition. In fact, we prove that if a ZF-model contains a Russell set, then it contains Russell sets with ternary partitions as well as Russell...
Kyriakos Keremedis (2022)
Commentationes Mathematicae Universitatis Carolinae
We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space is countably compact if and only if it is countably subcompact relative to . (iii) For every metrizable space , the following are equivalent: (a) is compact; (b) for every open filter of , ; (c) is subcompact relative to . We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable...
John Truss (1973)
Fundamenta Mathematicae
K. Wiśniewski (1972)
Fundamenta Mathematicae
Kyriakos Keremedis, Evangelos Felouzis, Eleftherios Tachtsis (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " is countably compact" and " is compact"
Josef Mattes (1993)
Monatshefte für Mathematik
Eleftherios Tachtsis (2015)
Bulletin of the Polish Academy of Sciences. Mathematics
In ZF (i.e. Zermelo-Fraenkel set theory without the Axiom of Choice AC), we investigate the relationship between UF(ω) (there exists a free ultrafilter on ω) and the statements "there exists a free ultrafilter on every Russell-set" and "there exists a Russell-set A and a free ultrafilter ℱ on A". We establish the following results: 1. UF(ω) implies that there exists a free ultrafilter on every Russell-set. The implication is not reversible in ZF. 2. The statement...
Kyriakos Keremedis, Eleftherios Tachtsis (1999)
Commentationes Mathematicae Universitatis Carolinae
We show that the statement CCFC = “the character of a maximal free filter of closed sets in a space is not countable” is equivalent to the Countable Multiple Choice Axiom CMC and, the axiom of choice AC is equivalent to the statement CFE = “closed filters in a space extend to maximal closed filters”. We also show that AC is equivalent to each of the assertions: “every closed filter in a space extends to a maximal closed filter with a well orderable filter base”, “for every set ,...
Valentina Harizanov (1981)
Publications de l'Institut Mathématique
Heike Mildenberger (2005)
Acta Universitatis Carolinae. Mathematica et Physica
Ali Enayat (2004)
Fundamenta Mathematicae
Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski introduced a set-theoretic axiom, here dubbed the Leibniz-Mycielski axiom LM, which asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the ranks of x and y, and a formula φ(v), such that satisfies φ(x) ∧¬ φ(y). We examine the relationship between LM and some other axioms of set theory. Our principal results are as follows: 1. In the presence of ZF, the following are equivalent: (a) LM. (b)...
Page 1 Next