Page 1 Next

Displaying 1 – 20 of 28

Showing per page

On a Certain Notion of Finite and a Finiteness Class in Set Theory without Choice

Horst Herrlich, Paul Howard, Eleftherios Tachtsis (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

We study the deductive strength of properties under basic set-theoretical operations of the subclass E-Fin of the Dedekind finite sets in set theory without the Axiom of Choice ( AC ), which consists of all E-finite sets, where a set X is called E-finite if for no proper subset Y of X is there a surjection f:Y → X.

On BPI Restricted to Boolean Algebras of Size Continuum

Eric Hall, Kyriakos Keremedis (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

(i) The statement P(ω) = “every partition of ℝ has size ≤ |ℝ|” is equivalent to the proposition R(ω) = “for every subspace Y of the Tychonoff product 2 ( ω ) the restriction |Y = Y ∩ B: B ∈ of the standard clopen base of 2 ( ω ) to Y has size ≤ |(ω)|”. (ii) In ZF, P(ω) does not imply “every partition of (ω) has a choice set”. (iii) Under P(ω) the following two statements are equivalent: (a) For every Boolean algebra of size ≤ |ℝ| every filter can be extended to an ultrafilter. (b) Every Boolean algebra of...

On certain non-constructive properties of infinite-dimensional vector spaces

Eleftherios Tachtsis (2018)

Commentationes Mathematicae Universitatis Carolinae

In set theory without the axiom of choice ( AC ), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC LO (AC for linearly ordered families of nonempty sets)—and hence AC WO (AC for well-ordered families of nonempty sets)— DC ( < κ ) (where κ is an uncountable regular cardinal), and “for every infinite set X , there is a bijection f : X { 0 , 1 } × X ”, implies the statement “there exists a field F such that every vector...

On pseudocompactness and related notions in ZF

Kyriakos Keremedis (2018)

Commentationes Mathematicae Universitatis Carolinae

We study in ZF and in the class of T 1 spaces the web of implications/ non-implications between the notions of pseudocompactness, light compactness, countable compactness and some of their ZFC equivalents.

On rigid relation principles in set theory without the axiom of choice

Paul Howard, Eleftherios Tachtsis (2016)

Fundamenta Mathematicae

We study the deductive strength of the following statements: 𝖱𝖱: every set has a rigid binary relation, 𝖧𝖱𝖱: every set has a hereditarily rigid binary relation, 𝖲𝖱𝖱: every set has a strongly rigid binary relation, in set theory without the Axiom of Choice. 𝖱𝖱 was recently formulated by J. D. Hamkins and J. Palumbo, and 𝖲𝖱𝖱 is a classical (non-trivial) 𝖹𝖥𝖢-result by P. Vopěnka, A. Pultr and Z. Hedrlín.

On spaces with the ideal convergence property

Jakub Jasinski, Ireneusz Recław (2008)

Colloquium Mathematicae

Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to I b , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.

On special partitions of Dedekind- and Russell-sets

Horst Herrlich, Paul Howard, Eleftherios Tachtsis (2012)

Commentationes Mathematicae Universitatis Carolinae

A Russell set is a set which can be written as the union of a countable pairwise disjoint set of pairs no infinite subset of which has a choice function and a Russell cardinal is the cardinal number of a Russell set. We show that if a Russell cardinal a has a ternary partition (see Section 1, Definition 2) then the Russell cardinal a + 2 fails to have such a partition. In fact, we prove that if a ZF-model contains a Russell set, then it contains Russell sets with ternary partitions as well as Russell...

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable...

On the Compactness and Countable Compactness of 2 in ZF

Kyriakos Keremedis, Evangelos Felouzis, Eleftherios Tachtsis (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " 2 is countably compact" and " 2 is compact"

On the Existence of Free Ultrafilters on ω and on Russell-sets in ZF

Eleftherios Tachtsis (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

In ZF (i.e. Zermelo-Fraenkel set theory without the Axiom of Choice AC), we investigate the relationship between UF(ω) (there exists a free ultrafilter on ω) and the statements "there exists a free ultrafilter on every Russell-set" and "there exists a Russell-set A and a free ultrafilter ℱ on A". We establish the following results: 1. UF(ω) implies that there exists a free ultrafilter on every Russell-set. The implication is not reversible in ZF. 2. The statement...

On the extensibility of closed filters in T 1 spaces and the existence of well orderable filter bases

Kyriakos Keremedis, Eleftherios Tachtsis (1999)

Commentationes Mathematicae Universitatis Carolinae

We show that the statement CCFC = “the character of a maximal free filter F of closed sets in a T 1 space ( X , T ) is not countable” is equivalent to the Countable Multiple Choice Axiom CMC and, the axiom of choice AC is equivalent to the statement CFE 0 = “closed filters in a T 0 space ( X , T ) extend to maximal closed filters”. We also show that AC is equivalent to each of the assertions: “every closed filter in a T 1 space ( X , T ) extends to a maximal closed filter with a well orderable filter base”, “for every set A ,...

On the Leibniz-Mycielski axiom in set theory

Ali Enayat (2004)

Fundamenta Mathematicae

Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski introduced a set-theoretic axiom, here dubbed the Leibniz-Mycielski axiom LM, which asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the ranks of x and y, and a formula φ(v), such that ( V α , ) satisfies φ(x) ∧¬ φ(y). We examine the relationship between LM and some other axioms of set theory. Our principal results are as follows: 1. In the presence of ZF, the following are equivalent: (a) LM. (b)...

Currently displaying 1 – 20 of 28

Page 1 Next