On Ciesielski's problems.
If Martin’s Axiom is true and the continuum hypothesis is false, and X is a compact Radon measure space with a non-separable space, then there is a continuous surjection from X onto .
Let G be a locally compact group, and let U be its unitary representation on a Hilbert space H. Endow the space ℒ(H) of bounded linear operators on H with the weak operator topology. We prove that if U is a measurable map from G to ℒ(H) then it is continuous. This result was known before for separable H. We also prove that the following statement is consistent with ZFC: every measurable homomorphism from a locally compact group into any topological group is continuous.
Given a partition P:L → ω of the lines in , n ≥ 2, into countably many pieces, we ask if it is possible to find a partition of the points, , so that each line meets at most m points of its color. Assuming Martin’s Axiom, we show this is the case for m ≥ 3. We reduce the problem for m = 2 to a purely finitary geometry problem. Although we have established a very similar, but somewhat simpler, version of the geometry conjecture, we leave the general problem open. We consider also various generalizations...
We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MB-representable algebra of sets.
A function f: ℝ → {0,1} is weakly symmetric (resp. weakly symmetrically continuous) at x ∈ ℝ provided there is a sequence hₙ → 0 such that f(x+hₙ) = f(x-hₙ) = f(x) (resp. f(x+hₙ) = f(x-hₙ)) for every n. We characterize the sets S(f) of all points at which f fails to be weakly symmetrically continuous and show that f must be weakly symmetric at some x ∈ ℝ∖S(f). In particular, there is no f: ℝ → {0,1} which is nowhere weakly symmetric. It is also shown that if at each point x we...
We define a countable antichain condition (ccc) property for partial orderings, weaker than precalibre-ℵ₁, and show that Martin's axiom restricted to the class of partial orderings that have the property does not imply Martin's axiom for σ-linked partial orderings. This yields a new solution to an old question of the first author about the relative strength of Martin's axiom for σ-centered partial orderings together with the assertion that every Aronszajn tree is special. We also answer a question...
We consider a set, L, of lines in and a partition of L into some number of sets: . We seek a corresponding partition such that each line l in meets the set in a set whose cardinality has some fixed bound, . We determine equivalences between the bounds on the size of the continuum, , and some relationships between p, and .
We investigate some geometrical properties of squares of special Sierpiński sets. In particular, we prove that (under CH) there exists a Sierpiński set S and a function p: S → S such that the images of the graph of this function under π'(⟨x,y⟩) = x - y and π''(⟨x,y⟩) = x + y are both Lusin sets.