On categories over the closed categories of fuzzy sets
The concepts of bounded subset, complete subset and directed subset, wich are well known in the context of partially ordered sets (X,≤), are extended in order to become appliable, with coherence, in fuzzy relational systems (X,R). The properties of these generalized structures are analyzed and operative exemples of them are presented.
Four new operators, which are analogous of the topological operators interior and closure, are defined. Some of their basic properties are studied. Their geometrical interpretations are given.
The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of -semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At...
The fuzzification of (normal) -subalgebras is considered, and some related properties are investigated. A characterization of a fuzzy -algebra is given.
In practice, input data entering a state problem are almost always uncertain to some extent. Thus it is natural to consider a set of admissible input data instead of a fixed and unique input. The worst scenario method takes into account all states generated by and maximizes a functional criterion reflecting a particular feature of the state solution, as local stress, displacement, or temperature, for instance. An increase in the criterion value indicates a deterioration in the featured quantity....
Perceptions about function changes are represented by rules like “If X is SMALL then Y is QUICKLY INCREASING.” The consequent part of a rule describes a granule of directions of the function change when X is increasing on the fuzzy interval given in the antecedent part of the rule. Each rule defines a granular differential and a rule base defines a granular derivative. A reconstruction of a fuzzy function given by the granular derivative and the initial value given by the rule is similar to Euler’s...
In this paper we extend the concept of an -fuzzy (characteristic) left (resp. right) ideal of a ring to a semiring , and we show that each level left (resp. right) ideal of an -fuzzy left (resp. right) ideal of is characteristic iff is -fuzzy characteristic.
We study some properties of -fuzzy left (right) ideals of a semiring related to level left (right) ideals.
The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.
The aim of this paper is to study some properties of Michálek’s fuzzy topology which are quite different of the classic properties of the Chang’s topology.