A type of βN with relative types
In this paper, an equivalence on the class of nullnorms on a bounded lattice based on the equality of the orders induced by nullnorms is introduced. The set of all incomparable elements w.r.t. the order induced by nullnorms is investigated. Finally, the recently posed open problems have been solved.
We show that AC is equivalent to the assertion that every compact completely regular topology can be extended to a compact Tychonoff topology.
We prove in ZFC that there is a set and a surjective function H: A → ⟨0,1⟩ such that for every null additive set X ⊆ ⟨0,1), is null additive in . This settles in the affirmative a question of T. Bartoszyński.
We study pairs (V, V₁), V ⊆ V₁, of models of ZFC such that adding κ-many Cohen reals over V₁ adds λ-many Cohen reals over V for some λ > κ.