Page 1 Next

Displaying 1 – 20 of 36

Showing per page

Haar null and non-dominating sets

Sławomir Solecki (2001)

Fundamenta Mathematicae

We study the σ-ideal of Haar null sets on Polish groups. It is shown that on a non-locally compact Polish group with an invariant metric this σ-ideal is closely related, in a precise sense, to the σ-ideal of non-dominating subsets of ω ω . Among other consequences, this result implies that the family of closed Haar null sets on a Polish group with an invariant metric is Borel in the Effros Borel structure if, and only if, the group is locally compact. This answers a question of Kechris. We also obtain...

Hausdorff gaps and towers in 𝓟(ω)/Fin

Piotr Borodulin-Nadzieja, David Chodounský (2015)

Fundamenta Mathematicae

We define and study two classes of uncountable ⊆*-chains: Hausdorff towers and Suslin towers. We discuss their existence in various models of set theory. Some of the results and methods are used to provide examples of indestructible gaps not equivalent to a Hausdorff gap. We also indicate possible ways of developing a structure theory for towers based on classification of their Tukey types.

Hausdorff ’s theorem for posets that satisfy the finite antichain property

Uri Abraham, Robert Bonnet (1999)

Fundamenta Mathematicae

Hausdorff characterized the class of scattered linear orderings as the least family of linear orderings that includes the ordinals and is closed under ordinal summations and inversions. We formulate and prove a corresponding characterization of the class of scattered partial orderings that satisfy the finite antichain condition (FAC).  Consider the least class of partial orderings containing the class of well-founded orderings that satisfy the FAC and is closed under the following operations: (1)...

Hausdorffness in intuitionistic fuzzy topological spaces.

Francisco Gallego Lupiáñez (2003)

Mathware and Soft Computing

The basic concepts of the theory of intuitionistic fuzzy topological spaces have been defined by D. Çoker and co-workers. In this paper, we define new notions of Hausdorffness in the intuitionistic fuzzy sense, and obtain some new properties, in particular on convergence.

Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations

Boaz Tsaban, Lubomyr Zdomsky (2012)

Journal of the European Mathematical Society

A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces X which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii α 1 spaces, for which every sheaf at a point can be amalgamated in a natural way. Let C p ( X ) denote the space of continuous real-valued functions on X with the topology of pointwise convergence. Our main result...

Hierarchies of function classes defined by the first-value operator

Armin Hemmerling (2008)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The first-value operator assigns to any sequence of partial functions of the same type a new such function. Its domain is the union of the domains of the sequence functions, and its value at any point is just the value of the first function in the sequence which is defined at that point. In this paper, the first-value operator is applied to establish hierarchies of classes of functions under various settings. For effective sequences of computable discrete functions, we obtain a hierarchy connected...

Hierarchies of function classes defined by the first-value operator

Armin Hemmerling (2007)

RAIRO - Theoretical Informatics and Applications

The first-value operator assigns to any sequence of partial functions of the same type a new such function. Its domain is the union of the domains of the sequence functions, and its value at any point is just the value of the first function in the sequence which is defined at that point. In this paper, the first-value operator is applied to establish hierarchies of classes of functions under various settings. For effective sequences of computable discrete functions, we obtain a hierarchy connected...

Historic forcing for Depth

Andrzej Rosłanowski, Saharon Shelah (2001)

Colloquium Mathematicae

We show that, consistently, for some regular cardinals θ <λ, there exists a Boolean algebra 𝔹 such that |𝔹| = λ⁺ and for every subalgebra 𝔹'⊆ 𝔹 of size λ⁺ we have Depth(𝔹') = θ.

HOD-supercompactness, Indestructibility, and Level by Level Equivalence

Arthur W. Apter, Shoshana Friedman (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

In an attempt to extend the property of being supercompact but not HOD-supercompact to a proper class of indestructibly supercompact cardinals, a theorem is discovered about a proper class of indestructibly supercompact cardinals which reveals a surprising incompatibility. However, it is still possible to force to get a model in which the property of being supercompact but not HOD-supercompact holds for the least supercompact cardinal κ₀, κ₀ is indestructibly supercompact, the strongly compact and...

Homogeneous aggregation operators

Tatiana Rückschlossová, Roman Rückschloss (2006)

Kybernetika

Recently, the utilization of invariant aggregation operators, i.e., aggregation operators not depending on a given scale of measurement was found as a very current theme. One type of invariantness of aggregation operators is the homogeneity what means that an aggregation operator is invariant with respect to multiplication by a constant. We present here a complete characterization of homogeneous aggregation operators. We discuss a relationship between homogeneity, kernel property and shift-invariance...

Currently displaying 1 – 20 of 36

Page 1 Next