Almost every function is independent
One of the possible models of fuzzification of non-transferable utility (NTU) coalitional games was extensively treated in [4]. In this paper, we suggest an alternative structure of fuzzification of the NTU games, where for every coalition a fuzzy class of (generally crisp) sets of its admissible pay-off vectors is considered. It is shown that this model of a fuzzy coalitional game can be represented by a fuzzy class of deterministic NTU games, and its basic concepts like the superadditivity or...
In this paper we sketch the development and give a model of the formal version of a generalization of the Alternative Set Theory.
The purpose of this article is to connect the notion of the amenability of a discrete group with a new form of structural Ramsey theory. The Ramsey-theoretic reformulation of amenability constitutes a considerable weakening of the Følner criterion. As a by-product, it will be shown that in any non-amenable group G, there is a subset E of G such that no finitely additive probability measure on G measures all translates of E equally. The analysis of discrete groups will be generalized to the setting...
Moore [Fund. Math. 220 (2013)] characterizes the amenability of the automorphism groups of countable ultrahomogeneous structures by a Ramsey-type property. We extend this result to the automorphism groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove that amenability is a condition.
We give an abstract version of Sierpiński's theorem which says that the closure in the uniform convergence topology of the algebra spanned by the sums of lower and upper semicontinuous functions is the class of all Baire 1 functions. Later we show that a natural generalization of Sierpiński's result for the uniform closure of the space of all sums of A and CA functions is not true. Namely we show that the uniform closure of the space of all sums of A and CA functions is a proper subclass of the...
Hong and Do[4] improved Mareš[7] result about additive decomposition of fuzzy quantities concerning an equivalence relation. But there still exists an open question which is the limitation to fuzzy quantities on R (the set of real numbers) with bounded supports in the presented theory. In this paper we restrict ourselves to fuzzy numbers, which are fuzzy quantities of the real line R with convex, normalized and upper semicontinuous membership function and prove this open question.
This paper deals with the problem of the determination of lower solutions of fuzzy relational equations. An algorithm of calculation of such a solution is presented.