Displaying 541 – 560 of 2138

Showing per page

Decomposing Borel functions using the Shore-Slaman join theorem

Takayuki Kihara (2015)

Fundamenta Mathematicae

Jayne and Rogers proved that every function from an analytic space into a separable metrizable space is decomposable into countably many continuous functions with closed domains if and only if the preimage of each F σ set under that function is again F σ . Many researchers conjectured that the Jayne-Rogers theorem can be generalized to all finite levels of Borel functions. In this paper, by using the Shore-Slaman join theorem on the Turing degrees, we show the following variant of the Jayne-Rogers theorem...

Decompositions of the plane and the size of the continuum

Ramiro de la Vega (2009)

Fundamenta Mathematicae

We consider a triple ⟨E₀,E₁,E₂⟩ of equivalence relations on ℝ² and investigate the possibility of decomposing the plane into three sets ℝ² = S₀ ∪ S₁ ∪ S₂ in such a way that each S i intersects each E i -class in finitely many points. Many results in the literature, starting with a famous theorem of Sierpiński, show that for certain triples the existence of such a decomposition is equivalent to the continuum hypothesis. We give a characterization in ZFC of the triples for which the decomposition exists....

Definability of small puncture sets

Andrés Eduardo Caicedo, John Daniel Clemens, Clinton Taylor Conley, Benjamin David Miller (2011)

Fundamenta Mathematicae

We characterize the class of definable families of countable sets for which there is a single countable definable set intersecting every element of the family.

Definable Davies' theorem

Asger Törnquist, William Weiss (2009)

Fundamenta Mathematicae

We prove the following descriptive set-theoretic analogue of a theorem of R. O. Davies: Every Σ¹₂ function f:ℝ × ℝ → ℝ can be represented as a sum of rectangular Σ¹₂ functions if and only if all reals are constructible.

Definable hereditary families in the projective hierarchy

R. Barua, V. Srivatsa (1992)

Fundamenta Mathematicae

We show that if ℱ is a hereditary family of subsets of ω ω satisfying certain definable conditions, then the Δ 1 1 reals are precisely the reals α such that β : α Δ 1 1 ( β ) . This generalizes the results for measure and category. Appropriate generalization to the higher levels of the projective hierarchy is obtained under Projective Determinacy. Application of this result to the Q 2 n + 1 -encodable reals is also shown.

Definable orthogonality classes in accessible categories are small

Joan Bagaria, Carles Casacuberta, A. R. D. Mathias, Jiří Rosický (2015)

Journal of the European Mathematical Society

We lower substantially the strength of the assumptions needed for the validity of certain results in category theory and homotopy theory which were known to follow from Vopěnka’s principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the formulas defining the given classes, in the sense of the Lévy hierarchy. For example, the statement that, for a class 𝒮 of morphisms in a locally presentable category 𝒞 of structures, the orthogonal class of objects is a small-orthogonality...

Definitions of finiteness based on order properties

Omar De la Cruz, Damir D. Dzhafarov, Eric J. Hall (2006)

Fundamenta Mathematicae

A definition of finiteness is a set-theoretical property of a set that, if the Axiom of Choice (AC) is assumed, is equivalent to stating that the set is finite; several such definitions have been studied over the years. In this article we introduce a framework for generating definitions of finiteness in a systematical way: basic definitions are obtained from properties of certain classes of binary relations, and further definitions are obtained from the basic ones by closing them under subsets...

Dense orderings, partitions and weak forms of choice

Carlos González (1995)

Fundamenta Mathematicae

We investigate the relative consistency and independence of statements which imply the existence of various kinds of dense orders, including dense linear orders. We study as well the relationship between these statements and others involving partition properties. Since we work in ZF (i.e. without the Axiom of Choice), we also analyze the role that some weaker forms of AC play in this context

Densité et dimension

Patrick Assouad (1983)

Annales de l'institut Fourier

Une partie 𝒮 de 2 X est appelée une classe de Vapnik-Cervonenkis si la croissance de la fonction Δ 𝒮 : r Sup { | A | | A X , | A | = r } est polynomiale; ces classes se trouvent être utiles en Statistique et en Calcul des Probabilités (voir par exemple Vapnik, Cervonenkis [V.N. Vapnik, A.YA. Cervonenkis, Theor. Prob. Appl., 16 (1971), 264-280], Dudley [R.M. Dudley, Ann. of Prob., 6 (1978), 899-929]).Le présent travail est un essai de synthèse sur les classes de Vapnik-Cervonenkis. Mais il contient aussi beaucoup de résultats nouveaux,...

Currently displaying 541 – 560 of 2138