On pseudo-bci ideals of pseudo-bci algebras
The notion of normal pseudo-BCI-algebras is studied and some characterizations of it are given. Extensions of pseudo-BCI-algebras are also considered.
Orthomodular implication algebras (with or without compatibility condition) are a natural generalization of Abbott’s implication algebras, an implication reduct of the classical propositional logic. In the paper deductive systems (= congruence kernels) of such algebras are described by means of their restrictions to principal filters having the structure of orthomodular lattices.
For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.