Géométrie asymptotique des courbes algébriques
On démontre que l’holonomie est non triviale au voisinage d’un cycle évanouissant au moyen d’un critère d’Imanishi et on donne une démonstration non standard de ce dernier.
The notion of free group is defined, a relatively wide collection of groups which enable infinite set summation (called commutative -group), is introduced. Commutative -groups are studied from the set-theoretical point of view and from the point of view of free groups. Commutativity of the operator which is a special kind of inverse limit and factorization, is proved. Tensor product is defined, commutativity of direct product (also a free group construction and tensor product) with the special...
This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set in a biequivalence vector space , such that for distinct , contains an infinite independent subset. Consequently, a class is dimensionally compact iff the -equivalence is compact on . This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.
Suppose is a set of non-negative integers with upper Banach density (see definition below) and the upper Banach density of is less than . We characterize the structure of by showing the following: There is a positive integer and a set , which is the union of arithmetic sequences [We call a set of the form an arithmetic sequence of difference and call a set of the form an arithmetic progression of difference . So an arithmetic progression is finite and an arithmetic sequence...
On montre comment la théorie des classes de Gevrey et de la sommabilité sont des généralisations naturelles de la théorie de Cauchy. On utilise le vocabulaire de l’Analyse Non Standard et on introduit la notion d’-fonction (fonction analytique définie “à près”, pour infiniment petit fixé, et ne prenant que des valeurs infiniment petite devant . On étend la théorie de Cauchy aux -fonctions : c’est la théorie de Cauchy sauvage. On interprète le phénomène de retard à la bifurcation à l’aide...
Let denote the set of log canonical thresholds of pairs , with a nonsingular variety of dimension , and a nonempty closed subscheme of . Using non-standard methods, we show that every limit of a decreasing sequence in lies in , proving in this setting a conjecture of Kollár. We also show that is closed in ; in particular, every limit of log canonical thresholds on smooth varieties of fixed dimension is a rational number. As a consequence of this property, we see that in order to check...
We present a nonstandard hull construction for locally uniform groups in a spirit similar to Luxemburg's construction of the nonstandard hull of a uniform space. Our nonstandard hull is a local group rather than a global group. We investigate how this construction varies as one changes the family of pseudometrics used to construct the hull. We use the nonstandard hull construction to give a nonstandard characterization of Enflo's notion of groups that are uniformly free from small subgroups. We...
Let be the set of positive integers and let . We denote by the arithmetic function given by , where is the number of positive divisors of . Moreover, for every we denote by the sequence We present classical and nonclassical notes on the sequence , where , , are understood as parameters.