Page 1

Displaying 1 – 3 of 3

Showing per page

Filling boxes densely and disjointly

J. Schröder (2003)

Commentationes Mathematicae Universitatis Carolinae

We effectively construct in the Hilbert cube = [ 0 , 1 ] ω two sets V , W with the following properties: (a) V W = , (b) V W is discrete-dense, i.e. dense in [ 0 , 1 ] D ω , where [ 0 , 1 ] D denotes the unit interval equipped with the discrete topology, (c) V , W are open in . In fact, V = V i , W = W i , where V i = 0 2 i - 1 - 1 V i j , W i = 0 2 i - 1 - 1 W i j . V i j , W i j are basic open sets and ( 0 , 0 , 0 , ... ) V i j , ( 1 , 1 , 1 , ... ) W i j , (d) V i W i , i is point symmetric about ( 1 / 2 , 1 / 2 , 1 / 2 , ... ) . Instead of [ 0 , 1 ] we could have taken any T 4 -space or a digital interval, where the resolution (number of points) increases with i .

Currently displaying 1 – 3 of 3

Page 1