Genealogy of simple permutations with order a power of two.
Let be a hereditary property of words, i.e., an infinite class of finite words such that every subword (block) of a word belonging to is also in . Extending the classical Morse-Hedlund theorem, we show that either contains at least words of length for every or, for some , it contains at most words of length for every . More importantly, we prove the following quantitative extension of this result: if has words of length then, for every , it contains at most words of length...
Let P be a hereditary property of words, i.e., an infinite class of finite words such that every subword (block) of a word belonging to P is also in P. Extending the classical Morse-Hedlund theorem, we show that either P contains at least n+1 words of length n for every n or, for some N, it contains at most N words of length n for every n. More importantly, we prove the following quantitative extension of this result: if P has m ≤ n words of length n then, for every k ≥ n + m, it contains at most...
Deux codages sont utilisés sur l’ensemble des permutations ou ordres totaux sur un ensemble fini à éléments et à chacun de ces codages est associé un produit direct d’ordres totaux. On démontre que le diagramme du treillis permutoèdre (ou ordre de Bruhat faible sur le groupe symétrique ) est intersection des diagrammes des deux produits directs de ordres totaux à éléments.