On a question of K. Leeb
A bijection between the set of binary trees with n vertices and the set of Dyck paths of length 2n is obtained. Two constructions are given which enable to pass from a Dyck path to a binary tree and from a binary tree to a Dyck path.
Every binary tree is associated to a permutation with repetitions, which determines it uniquely. Two operations are introduced and used for the construction of the set of all binary trees. The set of all permutations which correspond to a given binary tree is determined and its cardinal number is evaluated.