Periodicity and parity theorems for a statistic on -mino arrangements.
The aim of this paper is to characterize the patterns of successive distances of leaves in plane trivalent trees, and give a very short characterization of their parity pattern. Besides, we count how many trees satisfy some given sequences of patterns.
We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz...